Chagas disease is considered a public health issue in Colombia, where many regions are endemic. Triatoma dimidiata is an important vector after Rhodnius prolixus, and it is gaining importance in Boyacá, eastern Colombia. Following the recent elimination of R. prolixus in the region, it is pivotal to understand the behavior of T. dimidiata and the transmission dynamics of T. cruzi. We used qPCR and Next Generation Sequencing (NGS) to evaluate T. cruzi infection, parasite load, feeding profiles, and T. cruzi genotyping for T. dimidiata specimens collected in nine municipalities in Boyacá and explored T. dimidiata population genetics. We found that T. dimidiata populations are composed by a single population with similar genetic characteristics that present infection rates up to 70%, high parasite loads up to 1.46 × 109 parasite-equivalents/mL, a feeding behavior that comprises at least 17 domestic, synanthropic and sylvatic species, and a wide diversity of TcI genotypes even within a single specimen. These results imply that T. dimidiata behavior is similar to other successful vectors, having a wide variety of blood sources and contributing to the circulation of different genotypes of the parasite, highlighting its importance for T. cruzi transmission and risk for humans. In the light of the elimination of R. prolixus in Boyacá and the results we found, we suggest that T. dimidiata should become a new target for vector control programs. We hope this study provides enough information to enhance surveillance programs and a future effective interruption of T. cruzi vector transmission in endemic regions.
Introduction
Updating the distribution and natural infection status of triatomine bugs is critical for planning, prioritizing, and implementing strategies to control Chagas disease (CD), especially after vector reduction programs. After carrying out a control program, the Department of Boyaca contains the highest number of Colombian municipalities certified by PAHO to be free of intradomiciliary transmission of Trypanosoma cruzi by Rhodnius prolixus. The present work describes the spatial distribution, natural infection (NI), and molecular characterization of T. cruzi in synanthropic triatomines from the Department of Boyaca in 2017 and 2018.
Materials and methods
An entomological survey was conducted in 52 municipalities in Boyaca known to have had previous infestations of triatomine bugs. Insects were collected through active searches carried out by technical personnel from the Secretary of Health and community members using Triatomine Collection Stations (PITs-acronym in Spanish). For evaluation of natural infection, triatomines were identified morphologically and grouped in pools of one to five individuals of the same species collected in the same household. DNA derived from the feces of each pool of insects was analyzed by PCR for the presence of T. cruzi using primers flanking the satellite DNA of the parasite. SL-IR primers were used to differentiate TCI from the other DTUs and to identify different genotypes. The distribution of the collected triatomines was analyzed to determine any vector hotspots using spatial recreation.
Results
A total of 670 triatomine bugs was collected, belonging to five species: Triatoma dimidiata (73.2%), Triatoma venosa (16.7%), Panstrongylus geniculatus (5.7%), Rhodnius prolixus (4.4%), and Panstrongylus rufotuberculatus (0.4%), from 29 of the 52 municipalities. In total, 71.6% of the bugs were collected within houses (intradomiciliary) and the rest around the houses (peridomiciliary). Triatoma dimidiata was the most widely distributed species and had the highest natural infection index (37.8%), followed by T. venosa and P. geniculatus. TcI was the only DTU found, with the TcI Dom genotype identified in 80% of positive samples and TcI sylvatic in the other insects. Spatial analysis showed clusters of T. dimidiata and T. venosa in the northeast and southwest regions of Boyaca.
Conclusions
After some municipalities were certified free of natural transmission within houses (intradomiciliary transmission) of T. cruzi by R. prolixus, T. dimidiata has become the most prevalent vector present, and represents a significant risk of resurgent CD transmission. However, T. venosa, P. geniculatus, and P. rufotuberculatus also contribute to the increased risk of transmission. The presence of residual R. prolixus may undo the successes achieved through vector elimination programs. The molecular and spatial analysis used here allows us to identify areas with an ongoing threat of parasite transmission and improve entomological surveillance strategies.
S. 2014. Primer registro de Engytatus varians (Distant) (Hemiptera: Heteroptera: Miridae) en México y su depredación sobre Bactericera cockerelli (Šulc) (Hemiptera: Triozidae): una revisión de su distribución y hábitos. Acta Zoológica Mexicana (n.s.), 30(3): 617-624. RESUMEN. Engytatus varians (Distant) (Hemiptera: Miridae) es una especie zoofitófaga debido a que se alimenta de las plantas hospederas y de los insectos que viven en ellas como áfidos, moscas blancas, pseudocóccidos y lepidópteros. Actualmente, esta especie presenta una amplia pero imprecisa distribución. En este trabajo se reporta por primera vez la presencia de E. varians en México depredando ninfas del psílido del tomate, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) bajo condiciones de invernadero. En promedio, una ninfa de cuarto estadio de E. varians se alimentó de 46% de las ninfas de tercer estadio de B. cockerelli en un periodo de 24 h. Este resultado muestra que este depredador podría representar un candidato potencial para el manejo del psílido del tomate. También se incluye información de su distribución, plantas hospederas y presas. Palabras clave: Psílido de la papa o tomate, enemigos naturales nativos, míridos zoofitófagos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.