Aims. We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500 µm, encompassing the peak of the spectral energy distribution of cold dust for 8 < ∼ T < ∼ 50 K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68 • > ∼ > ∼ −70 • in a |b| ≤ 1 • latitude strip. Methods. Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2 • × 2 • "tile" that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared. Results. Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel-mode observations at 60 s −1 scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service. The DR1 Compact Source Catalogues are delivered as single-band photometric lists containing, in addition to source position, peak, and integrated flux and source sizes, a variety of parameters useful to assess the quality and reliability of the extracted sources. Caveats and hints to help in this assessment are provided. Flux completeness limits in all bands are determined from extensive synthetic source experiments and greatly depend on the specific line of sight along the Galactic plane because the background strongly varies as a function of Galactic longitude. Hi-GAL DR1 catalogues contain 123210, 308509, 280685, 160972, and 85460 compact sources in the five bands.
We present a re-reduction and expansion of the Bolocam Galactic Plane Survey, first presented by Aguirre et al. (2011a) and Rosolowsky et al. (2010a). The BGPS is a 1.1 mm survey of dust emission in the Northern galactic plane, covering longitudes −10 • < < 90 • and latitudes |b| < 0.5 • with a typical 1 − σ RMS sensitivity of 30-100 mJy in a ∼ 33 beam. Version 2 of the survey includes an additional ∼ 20 square degrees of coverage in the 3rd and 4th quadrants and ∼ 2 square degrees in the 1st quadrant. The new data release has improved angular recovery, with complete recovery out to ∼ 80 and partial recovery to ∼ 300 , and reduced negative bowls around bright sources resulting from the atmospheric subtraction process. We resolve the factor of 1.5 flux calibration offset between the v1.0 data release and other data sets and determine that there is no offset between v2.0 and other data sets. The v2.0 pointing accuracy is tested against other surveys and demonstrated to be accurate and an improvement over v1.0. We present simulations and tests of the pipeline and its properties, including measurements of the pipeline's angular transfer function.The Bolocat cataloging tool was used to extract a new catalog, which includes 8594 sources, with 591 in the expanded regions. We have demonstrated that the Bolocat 40 and 80 apertures are accurate even in the presence of strong extended background emission. The number of sources is lower than in v1.0, but the amount of flux and area included in identified sources is larger.
Hi-GAL is a large-scale survey of the Galactic plane, performed with Herschel in five infrared continuum bands between 70 and 500 µm. We present a band-merged catalogue of spatially matched sources and their properties derived from fits to the spectral energy distributions (SEDs) and heliocentric distances, based on the photometric catalogs presented in Molinari et al. (2016a), covering the portion of Galactic plane −71.0 • < < 67.0 • . The band-merged catalogue contains 100922 sources with a regular SED, 24584 of which show a 70 µm counterpart and are thus considered proto-stellar, while the remainder are considered starless. Thanks to this huge number of sources, we are able to carry out a preliminary analysis of early stages of star formation, identifying the conditions that characterise different evolutionary phases on a statistically significant basis. We calculate surface densities to investigate the gravitational stability of clumps and their potential to form massive stars. We also explore evolutionary status metrics such as the dust temperature, luminosity and bolometric temperature, finding that these are higher in proto-stellar sources compared to prestellar ones. The surface density of sources follows an increasing trend as they evolve from pre-stellar to proto-stellar, but then it is found to decrease again in the majority of the most evolved clumps. Finally, we study the physical parameters of sources with respect to Galactic longitude and the association with spiral arms, finding only minor or no differences between the average evolutionary status of sources in the fourth and first Galactic quadrants, or between "on-arm" and "inter-arm" positions.
We tested the validity of the three Larson relations in a sample of 213 massive clumps selected from the Herschel Hi-GAL survey and combined with data from the MALT90 survey of 3mm emission lines. The clumps have been divided in 5 evolutionary stages to discuss the Larson relations also as function of evolution. We show that this ensemble does not follow the three Larson relations, regardless of clump evolutionary phase. A consequence of this breakdown is that the virial parameter α vir dependence with mass (and radius) is only a function of the gravitational energy, independent of the kinetic energy of the system, and α vir is not a good descriptor of clump dynamics. Our results suggest that clumps with clear signatures of infall motions are statistically indistinguishable from clumps with no such signatures. The observed non-thermal motions are not necessarily ascribed to turbulence acting to sustain the gravity, but they may be due to the gravitational collapse at the clump scales. This seems particularly true for the most massive (M 1000 M ⊙ ) clumps in the sample, where also exceptionally high magnetic fields may not be enough to stabilize the collapse.
The Bolocam Galactic Plane Survey (BGPS) data for a six square degree region of the Galactic plane containing the Galactic center is analyzed and compared to infrared and radio continuum data. The BGPS 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.