In this paper, we show, by means of a linear scaling in time and coordinates, that the Chen system, given by x=a(y-x), y=(c-a)x+cy-xz, ż=-bz+xy, is, generically (c≠0), a special case of the Lorenz system. First, we infer that it is enough to consider two parameters to study its dynamics. Furthermore, we prove that there exists a homothetic transformation between the Chen and the Lorenz systems and, accordingly, all the dynamical behavior exhibited by the Chen system is present in the Lorenz system (since the former is a special case of the second). We illustrate our results relating Hopf bifurcations, periodic orbits, invariant surfaces, and chaotic attractors of both systems. Since there has been a large literature that has ignored this equivalence, the aim of this paper is to review and clarify this field. Unfortunately, a lot of the previous papers on the Chen system are unnecessary or incorrect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.