Predictions of the concordance cosmological model (CCM) of the structures in the environment of large spiral galaxies are compared with observed properties of Local Group galaxies. Five new, most probably irreconcilable problems are uncovered: 1) A wide variety of published CCM models consistently predict some form of relation between dark-matter-mass and luminosity for the Milky Way (MW) satellite galaxies, but none is observed.2) The mass function of luminous sub-haloes predicted by the CCM contains too few satellites with dark matter (DM) mass ≈10 7 M within their innermost 300 pc than in the case of the MW satellites.3) The Local Group galaxies and data from extragalactic surveys indicate there is a correlation between bulge-mass and the number of luminous satellites that is not predicted by the CCM. 4) The 13 new ultra-faint MW satellites define a disc-of-satellites (DoS) that is virtually identical to the DoS previously found for the 11 classical MW satellites, implying that most of the 24 MW satellites are correlated in phase-space. 5) The occurrence of two MW-type DM halo masses hosting MW-like galaxies is unlikely in the CCM. However, the properties of the Local Group galaxies provide information leading to a solution of the above problems. The DoS and bulge-satellite correlation suggest that dissipational events forming bulges are related to the processes forming phase-space correlated satellite populations. These events are well known to occur since in galaxy encounters energy and angular momentum are expelled in the form of tidal tails, which can fragment to form populations of tidal-dwarf galaxies (TDGs) and associated star clusters. If Local Group satellite galaxies are to be interpreted as TDGs then the substructure predictions of the CCM are internally in conflict. All findings thus suggest that the CCM does not account for the Local Group observations and that therefore existing as well as new viable alternatives have to be further explored. These are discussed and natural solutions for the above problems emerge.
There are two fundamentally different physical origins of faint satellite galaxies: cosmological substructures that contain shining baryons and the fragmentation of gas‐rich tidal arms thrown out from interacting galaxies during hierarchical structure formation. The latter tidal dwarf galaxies (TDGs) may form populations with correlated orbital angular momenta about their host galaxies. The existence of TDGs is a stringent necessity because they arise as a result of fundamental physical principles. We determine the significance of the apparent disc‐like distribution of Milky Way (MW) satellite galaxies. The distribution of the MW satellites is found to be inconsistent with an isotropic or prolate dark matter substructure distribution at a 99.5 per cent level including the recently discovered Ursa Major and Canes Venatici dwarf spheroidal galaxies. The distribution is extremely oblate and inclined by about 88° with respect to the the MW disc. We also apply the methods to Andromeda's (M31) satellite galaxies using two recently published data sets. It cannot be excluded that the whole population of M31 companions is drawn randomly from an isotropic parent distribution. However, two subsamples of Andromeda satellites are identified which have disc‐like features. A kinematically motivated subsample of eight Andromeda satellites form a pronounced disc‐like distribution in both data sets. The existence of this disc would be inconsistent with a cold dark matter parent distribution of subhaloes if the disc is rotationally supported. The M31 satellite distribution is inclined by about 59° with respect to the M31 disc, and has virtually the same orientation as the disc derived for the whole M31 satellite sample. We present a new geometric method to set restrictions on possible locations of angular momentum vectors for Andromeda satellites. Our conclusion is that both, the MW and M31, may indeed have satellite galaxies derived from TDGs. Further, both host‐discs and both identified discs‐of‐satellites are highly inclined relative to the supergalactic plane. The discs‐of‐satellites therefore cannot be created from individual accretion events from the supergalactic plane further supporting the possibility that they are of TDG origin.
Available proper motion measurements of Milky Way (MW) satellite galaxies are used to calculate their orbital poles and projected uncertainties. These are compared to a set of recent cold dark-matter (CDM) simulations, tailored specifically to solve the MW satellite problem. We show that the CDM satellite orbital poles are fully consistent with being drawn from a random distribution, while the MW satellite orbital poles indicate that the disc-of-satellites of the Milky Way is rotationally supported. Furthermore, the bootstrapping analysis of the spatial distribution of theoretical CDM satellites also shows that they are consistent with being randomly drawn. The theoretical CDM satellite population thus shows a significantly different orbital and spatial distribution than the MW satellites, most probably indicating that the majority of the latter are of tidal origin rather than being DM dominated sub-structures. A statistic is presented that can be used to test a possible correlation of satellite galaxy orbits with their spatial distribution.
The spatial distributions of the most recently discovered ultra‐faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs‐of‐satellites (DoS) of their host galaxies. In our investigation, we pay special attention to the selection bias introduced due to the limited sky coverage of Sloan Digital Sky Survey (SDSS). We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also note a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the DoS of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the DoS are optical manifestations of a phase‐space correlation of satellite galaxies.
The dwarf satellite galaxies in the Local Group are generally considered to be hosted in dark matter subhalos that survived the disruptive processes during infall onto their host halos. It has recently been argued that if the majority of satellites entered the Milky Way halo in a group rather than individually, this could explain the spatial and dynamical peculiarities of its satellite distribution. Such groups were identified as dwarf galaxy associations that are found in the nearby Universe. In this paper we address the question whether galaxies in such associations can be the progenitors of the Milky Way satellite galaxies. We find that the dwarf associations are much more extended than would be required to explain the disk-like distribution of the Milky Way and Andromeda satellite galaxies. We further identify a possible minor filamentary structure, perpendicular to the supergalactic plane, in which the dwarf associations are located, that might be related to the direction of infall of a progenitor galaxy of the Milky Way satellites, if they are of tidal origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.