We state a self-similar tiling principle which shows that any open subset of a self-similar set with open set condition may be tiled without loss of measure by copies under similitudes of any closed subset with positive measure. We use this method to get the optimal coverings and packings which give the exact value of the Hausdorff-type and packing measures. In particular, we show that the exact value of these measures coincides with the supremum or with the infimum of the inverse of the density of the natural probability measure on suitable classes of sets. This gives criteria for the numerical analysis of the measures, and allows us to compare their complexity in terms of computability.
We provide an algorithm for computing the centered Hausdorff measures of self-similar sets satisfying the strong separation condition. We prove the convergence of the algorithm and test its utility on some examples.2000 Mathematics Subject Classification. Primary 28A75, 28A80.
We show that given a σ-finite Borel regular measure µ in a metric space X, every σ-porous subset of X of finite measure can be approximated by strongly porous sets. It follows that every σ-porous set is the union of a σ-strongly porous set and a µ-null set. This answers in the positive the question whether a measure which is absolutely continuous with respect to the σ-ideal of all σ-strongly porous sets is absolutely continuous with respect to the σ-ideal of all σ-porous sets. Using these results, we obtain a natural decomposition of measures according to their upper porosity and obtain detailed information on values that upper porosity may attain almost everywhere.
We present an algorithm to compute the exact value of the packing measure of self-similar sets satisfying the so called SSC and prove its convergence to the value of the packing measure. We also test the algorithm with examples that show both, the accuracy of the algorithm for the most regular cases and the possibility of using the additional information provided by it to obtain formulas for the packing measure of certain self-similar sets. For example, we are able to obtain a formula for the packing measure of any Sierpinski gasket with contractio factor in the interval (0, 1/3] (Theorem 2).
We prove that if a self-similar set E in R n with Hausdorff dimension s satisfies the strong separation condition, then the maximal values of the H s -density on the class of arbitrary subsets of R n and on the class of Euclidean balls are attained, and the inverses of these values give the exact values of the Hausdorff and spherical Hausdorff measure of E. We also show that a ball of minimal density exists, and the inverse density of this ball gives the exact packing measure of E. Lastly, we show that these elements of optimal densities allow us to construct an optimal almost covering of E by arbitrary subsets of R n , an optimal almost covering of E by balls and an optimal packing of E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.