Background: The growing interest in neuroimaging technologies generates a massive amount of biomedical data of high dimensionality. Tensor-based analysis of brain imaging data has been recognized as an effective analysis that exploits its inherent multi-way nature. In particular, the advantages of tensorial over matrix-based methods have previously been demonstrated in the context of functional magnetic resonance imaging (fMRI) source localization. However, such methods can also become ineffective in realistic challenging scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover, they commonly rely on the assumption of an underlying multilinear model generating the data.-New Method: This paper aims at investigating the possible gains from exploiting the 4-dimensional nature of the brain images, through a higher-order tensorization of the fMRI signal, and the use of less restrictive generative models. In this context, the higher-order Block Term Decomposition (BTD) and the PARAFAC2 tensor models are considered for the first time in fMRI blind source separation. A novel PARAFAC2-like extension of BTD (BTD2) is also proposed, aiming at combining the effectiveness of BTD in handling strong instances of noise and the potential of PARAFAC2 to cope with datasets that do not follow the strict multilinear assumption.-Comparison with Existing Methods: The methods were tested using both synthetic and real data and compared with state of the art methods.-Conclusions: The simulation results demonstrate the effectiveness of BTD and BTD2 for challenging scenarios (presence of noise, spatial overlap among activation regions and inter-subject variability in the Haemodynamic Response Function (HRF)).
In this paper, the task-related fMRI problem is treated in its matrix factorization form, focusing on the Dictionary Learning (DL) approach. The proposed method allows the incorporation of a priori knowledge that is associated with both the experimental design and available brain atlases. Moreover, it can cope efficiently with uncertainties in the modeling of the hemodynamic response function. In addition, the method bypasses one of the major drawbacks of the DL methods; namely, the selection of the sparsity-related regularization parameters. Under the proposed formulation, the associated regularization parameters bear a direct relation to the number of the activated voxels for each one of the sources' spatial maps. This natural interpretation facilitates fine-tuning of the related parameters and allows for exploiting external information from brain atlases. The proposed method is evaluated against several other popular techniques, including the classical General Linear Model (GLM). The obtained performance gains are quantitatively demonstrated via a novel realistic synthetic fMRI dataset as well as real data from a challenging experimental design.
Advances in computer and communications technology have deeply affected the way we communicate. Social media have emerged as a major means of human communication. However, a major limitation in such media is the lack of non-verbal stimuli, which sometimes hinders the understanding of the message, and in particular the associated emotional content. In an effort to compensate for this, people started to use emoticons, which are combinations of keyboard characters that resemble facial expressions, and more recently their evolution: emojis, namely, small colorful images that resemble faces, actions and daily life objects. This paper presents evidence of the effect of emojis on memory retrieval through a functional Magnetic Resonance Imaging (fMRI) study. A total number of fifteen healthy volunteers were recruited for the experiment, during which successive stimuli were presented, containing words with intense emotional content combined with emojis, either with congruent or incongruent emotional content. Volunteers were asked to recall a memory related to the stimulus. The study of the reaction times showed that emotional incongruity among word+emoji combinations led to longer reaction times in memory retrieval compared to congruent combinations. General Linear Model (GLM) and Blind Source Separation (BSS) methods have been tested in assessing the influence of the emojis on the process of memory retrieval. The analysis of the fMRI data showed that emotional incongruity among word +emoji combinations activated the Broca's area (BA44 and BA45) in both hemispheres, the Supplementary Motor Area (SMA) and the inferior prefrontal cortex (BA47), compared to congruent combinations. Furthermore, compared to pseudowords, word+emoji combinations activated the left Broca's area (BA44 and BA45), the amygdala, the right temporal pole (BA48) and several frontal regions including the SMA and the inferior prefrontal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.