We studied the effects of an increasing amplitude of auditory stimulation on a variety of autonomic and CNS responses and their possible interdependence. The subjects were stimulated with an increasing amplitude of auditory tones while the auditory event-related potentials (ERPs), the cortical and extracerebral functional near-infrared spectroscopy (fNIRS) signal of standard and short separation channel recordings, the peripheral pulse measured by photoplethysmography, heart rate and electrodermal responses were recorded. Trials with eight tones of equal amplitude were presented. The results showed a parallel increase of activity in ERPs, fNIRS and peripheral responses with the increase in intensity of auditory stimulation. The ERPs, measured as peak-to-peak N1-P2, showed an increase in amplitude with auditory stimulation and a high attenuation from the first presentation with respect to the second to eighth presentations. Peripheral signals and standard and short channel fNIRS responses showed a decrease in amplitude in the high-intensity auditory stimulation conditions. Principal components analysis showed independent sources of variance for the recorded signals, suggesting independent control of the recorded physiological responses. The present results suggest a complex response associated to the increase of auditory stimulation with a fixed amplitude for ERPs, and a decrease in the peripheral and cortical haemodynamic response, possibly mediated by activation of the sympathetic nervous system, constituting a defensive reflex to excessive auditory stimulation.
The present study aims to analyze the systemic response to auditory stimulation by means of hemodynamic (cephalic and peripheral) and autonomic responses in a broad range of auditory intensities (70.9, 77.9, 84.5, 89.5, 94.5 dBA). This approach could help to understand the possible influence of the autonomic nervous system on the cephalic blood flow. Twenty‐five subjects were exposed to auditory stimulation while electrodermal activity (EDA), photoplethysmography (PPG), electrocardiogram, and functional near‐infrared spectroscopy signals were recorded. Seven trials with 20 individual tones, each for the five intensities, were presented. The results showed a differentiated response to the higher intensity (94.5 dBA) with a decrease in some peripheral signals such as the heart rate (HR), the pulse signal, the pulse transit time (PTT), an increase of the LFnu power in PPG, and at the head level a decrease in oxygenated and total hemoglobin concentration. After the regression of the visual channel activity from the auditory channels, a decrease in deoxyhemoglobin in the auditory cortex was obtained, indicating a likely active response at the highest intensity. Nevertheless, other measures, such as EDA (Phasic and Tonic), and heart rate variability (Frequency and time domain) showed no significant differences between intensities. Altogether, these results suggest a systemic and complex response to high‐intensity auditory stimuli. The results obtained in the decrease of the PTT and the increase in LFnu power of PPG suggest a possible vasoconstriction reflex by a sympathetic control of vascular tone, which could be related to the decrease in blood oxygenation at the head level.
Intensity Dependent Amplitude Changes (IDAP) have been extensively studied using Event-Related Potentials (ERPs) and have been linked to several psychiatric disorders. This study aimed to explore the application of functional near-infrared spectroscopy (fNIRS) in IDAP paradigms and to relate it to ERPs. Thirty-three and thirty-one subjects participated in two experiments, respectively. The first experiment consisted of the presentation of three-tone intensities (77.9dB, 84.5dB, and 89.5dB) lasting 500 ms, each type randomly presented 54 times, while the second experiment consisted of the presentation of five-tone intensities (70.9dB, 77.9dB, 84.5dB, 89.5dB, and 95.5dB) in blocks composed of eight tones of the same intensity lasting 70 ms each one, in total 20 blocks were presented. EEG was used to measure ERP components: N1, P2, and N1-P2 peak-to-peak amplitude. fNIRS allowed the analysis of the hemodynamic activity in the auditory and prefrontal cortices. The results showed an increase in N1, P2, and N1-P2 peak-to-peak amplitude with auditory intensity. Similarly, oxyhemoglobin and deoxyhemoglobin concentrations showed amplitude increases and decreases, respectively, with auditory intensity in the auditory and prefrontal cortices. Spearman correlation analysis showed a relationship between the left auditory cortex and N1 and the right dorsolateral cortex and P2 amplitude. These results suggest that there is a brain response to auditory intensity changes that can be obtained by EEG and fNIRS, supporting the neurovascular coupling process. Overall, this study contributes to the understanding and application of fNIRS in auditory paradigms and highlights its potential to be used in a complementary manner to ERPs.
Predictive coding framework posits that our brain continuously monitors changes in the environment and updates its predictive models, minimizing prediction errors to efficiently adapt to environmental demands. However, the underlying neurophysiological mechanisms of these predictive phenomena remain unclear. The present study aimed to explore the systemic neurophysiological correlates of predictive coding processes during passive and active auditory processing. Electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS) and autonomic nervous system (ANS) measures were analyzed using an auditory pattern-based novelty oddball paradigm. A sample of thirty-two healthy subjects was recruited. The results showed shared slow evoked potentials between passive and active conditions that could be interpreted as automatic predictive processes of anticipation and updating, independent of conscious attentional effort. A dissociated topography of the cortical hemodynamic activity and distinctive evoked potentials upon auditory pattern violation were also found between both conditions, whereas only conscious perception leading to imperative responses was accompanied by phasic ANS responses. These results suggest a systemic-level hierarchical reallocation of predictive coding neural resources as a function of contextual demands in the face of sensory stimulation. Principal component analysis permitted to associate the variability of some of the recorded signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.