TMAO is associated with long-term fatal outcomes in CAP patients without evident CAD and modifiable through antibiotic treatment. Whether chronic modulation of TMAO by targeting the microbiome reduces mortality risk needs to be evaluated in future interventional trials.
Metabolic profiling through targeted quantification of a predefined subset of metabolites, performed by mass spectrometric analytical techniques, allows detailed investigation of biological pathways and thus may provide information about the interaction of different organic systems, ultimately improving understanding of disease risk and prognosis in a variety of diseases. Early risk assessment, in turn, may improve patient management in regard to cite-of-care decisions and treatment modalities. Within this review, we focus on the potential of metabolic profiling to improve our pathophysiological understanding of disease and management of patients. We focus thereby on lower respiratory tract infections (LRTI) including community-acquired pneumonia (CAP) and chronic obstructive pulmonary disease (COPD), an important disease responsible for high mortality, morbidity and costs worldwide. Observational data from numerous clinical and experimental studies have provided convincing data linking metabolic blood biomarkers such as lactate, glucose or cortisol to patient outcomes. Also, identified through metabolomic studies, novel innovative metabolic markers such as steroid hormones, biogenic amines, members of the oxidative status, sphingo- and glycerophospholipids, and trimethylamine-N-oxide (TMAO) have shown promising results. Since many uncertainties remain in predicting mortality in these patients, further prospective and retrospective observational studies are needed to uncover metabolic pathways responsible for mortality associated with LRTI. Improved understanding of outcome-specific metabolite signatures in LRTIs may optimize patient management strategies, provide potential new targets for future individual therapy, and thereby improve patients’ chances for survival.
Background: As part of the immune defense during infection, an increase in enzyme activity of indoleamine 2,3-dioxygenase (IDO) leads to a breakdown of tryptophan to kynurenine. In previous animal studies, therapeutic antagonism of IDO resulted in reduced sepsis mortality. We investigated the prognostic ability of tryptophan, serotonin, kynurenine and IDO (represented by the ratio of kynurenine/tryptophan) to predict adverse clinical outcomes in patients with community-acquired pneumonia (CAP). Methods: We measured tryptophan, serotonin and kynurenine on admission plasma samples from CAP patients included in a previous multicenter trial by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We studied their association with inflammation (C-reactive protein), infection (procalcitonin) and clinical outcome. Results: Mortality in the 268 included patients was 45% within 6 years of follow-up. IDO and kynurenine showed a
Metabolomics is a rapidly growing area of research. Metabolomic markers can provide information about the interaction of different organ systems, and thereby improve the understanding of physio-pathological processes, disease risk, prognosis and therapy responsiveness in a variety of diseases. Areas covered: In this narrative review of recent clinical studies investigating metabolomic markers in adult patients presenting with acute infectious disease, we mainly focused on patients with sepsis and lower respiratory tract infections. Currently, there is a growing body of literature showing that single metabolites from distinct metabolic pathways, as well as more complex metabolomic signatures are associated with disease severity and outcome in patients with systemic infections. These pathways include, among others, metabolomic markers of oxidative stress, steroid hormone and amino acid pathways, and nutritional markers. Expert commentary: Metabolic profiling has great potential to optimize patient management, to provide new targets for individual therapy and thereby improve survival of patients. At this stage, research mainly focused on the identification of new predictive signatures and less on metabolic determinants to predict treatment response. The transition from observational studies to implementation of novel markers into clinical practice is the next crucial step to prove the usefulness of metabolomic markers in patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.