In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two-or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set.
Single-channel speech separation has recently made great progress thanks to learned filterbanks as used in ConvTasNet. In parallel, parameterized filterbanks have been proposed for speaker recognition where only center frequencies and bandwidths are learned. In this work, we extend real-valued learned and parameterized filterbanks into complex-valued analytic filterbanks and define a set of corresponding representations and masking strategies. We evaluate these filterbanks on a newly released noisy speech separation dataset (WHAM). The results show that the proposed analytic learned filterbank consistently outperforms the real-valued filterbank of ConvTasNet. Also, we validate the use of parameterized filterbanks and show that complex-valued representations and masks are beneficial in all conditions. Finally, we show that the STFT achieves its best performance for 2 ms windows.
This paper describes Asteroid, the PyTorch-based audio source separation toolkit for researchers. Inspired by the most successful neural source separation systems, it provides all neural building blocks required to build such a system. To improve reproducibility, Kaldi-style recipes on common audio source separation datasets are also provided. This paper describes the software architecture of Asteroid and its most important features. By showing experimental results obtained with Asteroid's recipes, we show that our implementations are at least on par with most results reported in reference papers. The toolkit is publicly available at github.com/mpariente/asteroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.