Future lightweight, flexible, and wearable electronics will employ visible‐light‐communication schemes to interact within indoor environments. Organic photodiodes are particularly well suited for such technologies as they enable chemically tailored optoelectronic performance and fabrication by printing techniques on thin and flexible substrates. However, previous methods have failed to address versatile functionality regarding wavelength selectivity without increasing fabrication complexity. This work introduces a general solution for printing wavelength‐selective bulk‐heterojunction photodetectors through engineering of the ink formulation. Nonfullerene acceptors are incorporated in a transparent polymer donor matrix to narrow and tune the response in the visible range without optical filters or light‐management techniques. This approach effectively decouples the optical response from the viscoelastic ink properties, simplifying process development. A thorough morphological and spectroscopic investigation finds excellent charge‐carrier dynamics enabling state‐of‐the‐art responsivities >102 mA W−1 and cutoff frequencies >1.5 MHz. Finally, the color selectivity and high performance are demonstrated in a filterless visible‐light‐communication system capable of demultiplexing intermixed optical signals.
The fabrication of electronics on the basis of biofriendly materials aims to counterbalance the negative trends conveyed by the short life-cycle of electronics. Furthermore, these materials open the possibility to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.