A Computational Fluid Dynamics (CFD) model was developed toanalyze the open-channel flow in a new set of egg-shaped pipes for small combined sewer systems. The egg-shaped cross-section was selected after studying several geometries under different flow conditions. Once the egg-shaped cross-section was defined, a real-scale physical model was built and a series of partial-full flow experiments were performed in order to validate the numerical simulations. Furthermore, the numerical velocity distributions were compared with an experimental formulation for analytic geometries, with comparison results indicating a satisfactory concordance. After the hydraulic performance of the egg-shaped pipe was analyzed, the numerical model was used to compare the average velocity and shear stress against an equivalent area circular pipe under low flow conditions. The proposed egg shape showed a better flow performance up to a filling ratio of h/H = 0.25.
This study analyses the mobilization of total suspended solids (TSS) for different spatial distributions of sediment load located over the roadway surface of a full-scale street section physical model. At the sewer network outlet, flow discharges were measured and TSS pollutographs were determined with manual grab samples and inferred from turbidity records. In all the tests, the rain duration was 5 min and its averaged intensity was 101 mm/h. In addition, solids that were not washed off at the end of the experiments were collected from the street surface, gully pots and pipes and the mass balance error was checked. The experiments were configured to assess the influence of the initial load, spatial distribution method, distance from gully pot and distribution area dimensions on the TSS washoff. The study showed that sediment initial load and distribution cannot explain completely pollutant washoff processes because other variables such as the spatial rainfall distribution or the runoff depth also affect to the outlet pollutographs and system mass balances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.