Graphene is inherently sensitive to vicinal dielectrics and local charge distributions, a property that can be probed by the position of the Dirac point in graphene field‐effect transistors. Exploiting this as a useful sensing principle requires selectivity; however, graphene itself exhibits no molecule‐specific interaction. Complementarily, metal–organic frameworks can be tailored to selective adsorption of specific molecular species. Here, a selective ethanol sensor is demonstrated by growing a surface‐mounted metal–organic framework (SURMOF) directly onto graphene field‐effect transistors (GFETs). Unprecedented shifts of the Dirac point, as large as 15 V, are observed when the SURMOF/GFET is exposed to ethanol, while a vanishingly small response is observed for isopropanol, methanol, and other constituents of the air, including water. The synthesis and conditioning of the hybrid materials sensor with its functional characteristics are described and a model is proposed to explain the origin, magnitude, and direction of the Dirac point voltage shift. Tailoring multiple SURMOFs to adsorb specific gases on an array of such devices thus generates a versatile, selective, and highly sensitive platform for sensing applications.
A printed vertical field-effect transistor is demonstrated, which decouples critical device dimensions from printing resolution. A printed mesoporous semiconductor layer, sandwiched between vertically stacked drive electrodes, provides <50 nm channel lengths. A polymer-electrolyte-based gate insulator infiltrates the percolating pores of the mesoporous channel to accumulate charge carriers at every semiconductor domain, thereby, resulting in an unprecedented current density of MA cm .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.