Data sharing is a precondition of precision medicine. Numerous organizations have produced abundant guidance on data sharing. Despite such efforts, data are not being shared to a degree that can trigger the expected data-driven revolution in precision medicine. We set out to explore why. Here we report the results of a comprehensive analysis of data-sharing guidelines issued over the past two decades by multiple organizations. We found that the guidelines overlap on a restricted set of policy themes. However, we observed substantial fragmentation in the policy landscape across specific organizations and data types. This may have contributed to the current stalemate in data sharing. To move toward a more efficient data-sharing ecosystem for precision medicine, policy makers should explore innovative ways to cope with central policy themes such as privacy, consent, and data quality; focus guidance on interoperability, attribution, and public engagement; and promote data-sharing policies that can be adapted to multiple data types.
Background The Covid-19 pandemic is characterized by uncertainty and constant change, forcing governments and health authorities to ramp up risk communication efforts. Consequently, visuality and social media platforms like Twitter have come to play a vital role in disseminating prevention messages widely. Yet to date, only little is known about what characterizes visual risk communication during the Covid-19 pandemic. To address this gap in the literature, this study’s objective was to determine how visual risk communication was used on Twitter to promote the World Health Organisations (WHO) recommended preventative behaviours and how this communication changed over time. Methods We sourced Twitter’s 500 most retweeted Covid-19 messages for each month from January–October 2020 using Crowdbreaks. For inclusion, tweets had to have visuals, be in English, come from verified accounts, and contain one of the keywords ‘covid19’, ‘coronavirus’, ‘corona’, or ‘covid’. Following a retrospective approach, we then performed a qualitative content analysis of the 616 tweets meeting inclusion criteria. Results Our results show communication dynamics changed over the course of the pandemic. At the start, most retweeted preventative messages came from the media and health and government institutions, but overall, personal accounts with many followers (51.3%) predominated, and their tweets had the highest spread (10.0%, i.e., retweet count divided by followers). Messages used mostly photographs and images were found to be rich with information. 78.1% of Tweets contained 1–2 preventative messages, whereby ‘stay home’ and ‘wear a mask’ frequented most. Although more tweets used health loss framing, health gain messages spread more. Conclusion Our findings can inform the didactics of future crisis communication. The results underscore the value of engaging individuals, particularly influencers, as advocates to spread health risk messages and promote solidarity. Further, our findings on the visual characteristic of the most retweeted tweets highlight factors that health and government organisations should consider when creating visual health messages for Twitter. However, that more tweets used the emotive medium of photographs often combined with health loss framing raises concerns about persuasive tactics. More research is needed to understand the implications of framing and its impact on public perceptions and behaviours.
Background The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed of technology development and the almost instantaneous global spread of news, it is important to follow evolving debates without much delay and in sufficient detail, as certain events may have a major long-term impact on public opinion and later influence policy decisions. Objective Social media networks such as Twitter have shown to be major drivers of news dissemination and public discourse. They provide a vast amount of semistructured data in almost real-time and give direct access to the content of the conversations. We can now mine and analyze such data quickly because of recent developments in machine learning and natural language processing. Methods Here, we used Bidirectional Encoder Representations from Transformers (BERT), an attention-based transformer model, in combination with statistical methods to analyze the entirety of all tweets ever published on CRISPR since the publication of the first gene editing application in 2013. Results We show that the mean sentiment of tweets was initially very positive, but began to decrease over time, and that this decline was driven by rare peaks of strong negative sentiments. Due to the high temporal resolution of the data, we were able to associate these peaks with specific events and to observe how trending topics changed over time. Conclusions Overall, this type of analysis can provide valuable and complementary insights into ongoing public debates, extending the traditional empirical bioethics toolset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.