Ruth Loos and colleagues report findings from a meta-analysis of multiple studies examining the extent to which physical activity attenuates effects of a specific gene variant, FTO, on obesity in adults and children. They report a fairly substantial attenuation by physical activity on the effects of this genetic variant on the risk of obesity in adults.
Susceptibility to autoimmune insulin-dependent (type 1) diabetes mellitus is determined by a combination of environmental and genetic factors, which include variation in MHC genes on chromosome 6p21 (IDDM1) and the insulin gene on chromosome 11p15 (IDDM2). However, linkage to IDDM1 and IDDM2 cannot explain the clustering of type 1 diabetes in families, and a role for other genes is inferred. In the present report we describe linkage and association of type 1 diabetes to the CTLA-4 gene (cytotoxic T lymphocyte associated-4) on chromosome 2q33 (designated IDDM12). CTLA-4 is a strong candidate gene for T cell-mediated autoimmune disease because it encodes a T cell receptor that mediates T cell apoptosis and is a vital negative regulator of T cell activation. In addition, we provide supporting evidence that CTLA-4 is associated with susceptibility to Graves' disease, another organ-specific autoimmune disease.
Objective: To investigate the role of the Pro12Ala peroxisome proliferator-activated receptor (PPAR) g-2 polymorphism in the susceptibility to the insulin resistance syndrome and its metabolic complications in a population-based nationwide multicenter study in Spain. Design: 464 unrelated adults (45.3% men and 54.7% women) aged between 35 and 64 years were randomly chosen from a nationwide population-based survey of obesity and related conditions including insulin resistance and cardiovascular risk factors. Methods: Anthropometric determinations included: body mass index (BMI), waist-to-hip ratio, sagittal abdominal diameter; biochemical determinations included: fasting plasma glucose concentration and concentration 2 h after an oral glucose tolerance test (OGTT), total cholesterol, high and low density lipoprotein-cholesterol, triglycerides, leptin and insulin. Systolic and diastolic blood pressure were also measured. Genotyping of the PPARg-2 Pro12Ala polymorphism was determined by polymerase chain reaction and single strand conformation polymorphism analysis. Results: The Ala12 allele frequency was higher in obese men than in lean men (0.15 vs 0.08, P ¼ 0:03). Men carriers of the Ala12 allele had a higher BMI than non-carriers (38.9% vs 21.3%; adjusted odds ratio 2.36, 95% confidence interval 1.10 -5.05, P ¼ 0:03). However, despite higher BMI obese men carriers of the Ala12 allele had lower sagittal abdominal diameter than Pro12 homozygotes ð24:1^3:2 vs 26:3^2:5 cm; P ¼ 0:01Þ: The Ala12 allele was associated with lower total triglycerides levels in the overall population and it was also associated with lower fasting insulin levels and a higher insulin sensitivity by homeostasis model assessment (HOMA) in women. Conclusions: Our results suggest that the Pro12Ala polymorphism of the PPARg-2 gene promotes peripheral deposition of adipose tissue and increased insulin sensitivity for a given BMI. The results in women might be due to their different adipose tissue distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.