Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.
We characterize the landscape of somatic mutations—mutations occurring after fertilization—in the human brain using ultra-deep (~250X) whole-genome sequencing of prefrontal cortex from 59 autism spectrum disorder (ASD) cases and 15 controls. We observe a mean of 26 somatic single nucleotide variants (sSNVs) per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2–3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 sSNVs present in ≥2% of cells—comparable to the number of de novo germline mutations per generation—with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared to controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.
Autoinflammatory diseases comprise a wide range of syndromes caused by dysregulation of the innate immune response. They are difficult to diagnose due to their phenotypic heterogeneity and variable expressivity. Thus, the genetic origin of the disease remains undetermined for an important proportion of patients. We aim to identify causal genetic variants in patients with suspected autoinflammatory disease and to test the advantages and limitations of the clinical exome gene panels for molecular diagnosis. Twenty-two unrelated patients with clinical features of autoinflammatory diseases were analyzed using clinical exome sequencing (~4800 genes), followed by bioinformatic analyses to detect likely pathogenic variants. By integrating genetic and clinical information, we found a likely causative heterozygous genetic variant in NFKBIA (p.D31N) in a North-African patient with a clinical picture resembling the deficiency of interleukin-1 receptor antagonist, and a heterozygous variant in DNASE2 (p.G322D) in a Spanish patient with a suspected lupus-like monogenic disorder. We also found variants likely to increase the susceptibility to autoinflammatory diseases in three additional Spanish patients: one with an initial diagnosis of juvenile idiopathic arthritis who carries two heterozygous UNC13D variants (p.R727Q and p.A59T), and two with early-onset inflammatory bowel disease harbouring NOD2 variants (p.L221R and p.A728V respectively). Our results show a similar proportion of molecular diagnosis to other studies using whole exome or targeted resequencing in primary immunodeficiencies. Thus, despite its main limitation of not including all candidate genes, clinical exome targeted sequencing can be an appropriate approach to detect likely causative variants in autoinflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.