Background
Long-term outcomes of hematopoietic stem cell transplantation (HSCT) in children with juvenile metachromatic leukodystrophy (MLD) have been investigated systematically, while short-term effects of HSCT on the course of the disease remain to be elucidated.
Results
In this study, the clinical course was evaluated over the first 24 months following HSCT, conducted at our center in 12 children with juvenile MLD (mean follow-up 6.75 years, range 3–13.5) and compared with 35 non-transplanted children with juvenile MLD. Motor function (GMFM-88 and GMFC-MLD), cognitive function (FSIQ), peripheral neuropathy (tibial nerve conduction velocity), and cerebral changes (MLD-MR severity score) were tested prospectively.
Seven children remained neurologically stable over a long period, five exhibited rapid disease progression over the first 12 to 18 months after transplantation. In the latter, time from first gross motor symptoms to loss of independent walking was significantly shorter compared with non-transplanted patients at the same stage of disease (p < 0.02). Positive prognostic factors were good motor function (GMFM = 100%, GMFC-MLD = 0) and a low MR severity score (≤ 17) at the time of HSCT.
Conclusions
Our results show that if disease progression occurs, this happens early on after HSCT and proceeds faster than in non-transplanted children with juvenile MLD, indicating that HSCT may trigger disease progression.
ObjectiveThe aim of this study was to investigate whether the extent and topography of cerebral demyelination correlates with and predicts disease progression in patients with juvenile metachromatic leukodystrophy (MLD).MethodsA total of 137 MRIs of 46 patients with juvenile MLD were analyzed. Demyelination load and brain volume were quantified using the previously developed Software “clusterize.” Clinical data were collected within the German Leukodystrophy Network and included full scale intelligence quotient (FSIQ) and gross motor function data. Voxel‐based lesion‐symptom mapping (VLSM) across the whole brain was performed to investigate the spatial relationship of cerebral demyelination with motor or cognitive function. The prognostic value of the demyelination load at disease onset was assessed to determine the severity of disease progression.ResultsThe demyelination load (corrected by the individual brain volume) correlated significantly with gross motor function (r = +0.55) and FSIQ (r = −0.55). Demyelination load at disease onset was associated with the severity of disease progression later on (P < 0.01). VLSM results associated frontal lobe demyelination with loss in FSIQ and more central region demyelination with decline of motor function. Especially progression of demyelination within the motor area was associated with severe disease progression.InterpretationWe were able to show for the first time in a large cohort of patients with juvenile MLD that the demyelination load correlates with motor and cognitive symptoms. Moreover, demyelination load at disease onset, especially the involvement of the central region, predicts severity of disease progression. Thus, demyelination load seems a functionally relevant MRI parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.