Objectives This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. Methods An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. Results Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. Discussion This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.
The field of spinal cord MRI is lacking a common template, as existing for the brain, which would allow extraction of multi-parametric data (diffusion-weighted, magnetization transfer, etc.) without user bias, thereby facilitating group analysis and multi-center studies. This paper describes a framework to produce an unbiased average anatomical template of the human spinal cord. The template was created by co-registering T2-weighted images (N = 16 healthy volunteers) using a series of pre-processing steps followed by non-linear registration. A white and gray matter probabilistic template was then merged to the average anatomical template, yielding the MNI-Poly-AMU template, which currently covers vertebral levels C1 to T6. New subjects can be registered to the template using a dedicated image processing pipeline. Validation was conducted on 16 additional subjects by comparing an automatic template-based segmentation and manual segmentation, yielding a median Dice coefficient of 0.89. The registration pipeline is rapid (~15 min), automatic after one C2/C3 landmark manual identification, and robust, thereby reducing subjective variability and bias associated with manual segmentation. The template can notably be used for measurements of spinal cord cross-sectional area, voxel-based morphometry, identification of anatomical features (e.g., vertebral levels, white and gray matter location) and unbiased extraction of multi-parametric data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.