Stellar-mass compact binaries in eccentric orbits are almost guaranteed sources of gravitational waves for the Laser Interferometer Space Antenna. We present a prescription to compute accurate and efficient gravitational-wave polarizations associated with bound compact binaries of arbitrary eccentricity and mass ratio moving in slowly precessing orbits. We compare our approach with those existing in the literature and present its advantages.
Abstract. A quasi-Keplerian parameterisation for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and nextto-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin-orbit and 1PN spin-spin contributions, whereby the spins are assumed to be of 0PN order.
The article provides full-analytic gravitational wave (GW) forms for eccentric nonspinning compact binaries of arbitrary mass ratio in the time Fourier domain. The semi-analytical property of recent descriptions, i.e. the demand of inverting the higher-order Kepler equation numerically but keeping all other computations analytic, is avoided for the first time.The article is a completion of a previous one (M. Tessmer and G. Schäfer, Phys. Rev. D 82, 124064 (2010)) to second post-Newtonian (2PN) order in the harmonic GW amplitude and conservative orbital dynamics. A fully analytical inversion formula of the Kepler equation in harmonic coordinates is provided, as well as the analytic time Fourier expansion of trigonometric functions of the eccentric anomaly in terms of sines and cosines of the mean anomaly. Tail terms are not considered.
The paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Königsdörffer and Gopakumar [PRD 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasi-circular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.
Abstract. In this article the quasi-Keplerian parameterisation for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity type variable x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.