Traditional schemes for abstract interpretation-based global analysis of logic programs generally focus on obtaining procedure argument mode and type information. Variable sharing information is often given only the attention needed to preserve the correctness of the analysis. However, such sharing information can be very useful. In particular, it can be used for predicting runtime goal independence, which can eliminate costly run-time checks in and-parallel execution. In this paper, a new algorithm for doing abstract interpretation in logic programs is described which concentrates on inferring the dependencies of the terms bound to program variables with increased precisión and at all points in the execution of the program, rather than just at a procedure level. Algorithms are presented for computing abstract entry and success substitutions which extensively keep track of variable aliasing and term dependence information. In addition, a new, abstract domain independent ñxpoint algorithm is presented and described in detail. The algorithms are illustrated with examples. Finally, results from an implementation of the abstract interpreter are presented.[14], conventional abstract interpretation techniques can be applied (with only minor modifications) to programs which are to be evaluated in IAP (Debray presents in [7] an analysis framework for other types of parallelism where the properties of IAP regarding the similarity with sequential execution don't hold). In [27] we reported some results obtained from an abstract interpreter for IAP constructed more or less along the lines of conventional systems, except for the techniques used to improve its efñciency. This interpreter is most apt at generating groundness information and it was shown in [27] to be reasonably effective at reducing run-time checks. The approach presented in this paper is targeted at improving those results through better tracking of terms which are independent but not ground. 4 Even though the representation that we use for abstract substitutions is essentially the same as in Jacobs and Langen [16], there are fundamental differences between our approach and theirs. Most importantly, our algorithm for abstract interpretation uses a top-down directed bottom-up approach while theirs uses a puré bottom-up approach ([8], [20], [19]). Consequently, we use a novel fixpoint computation algorithm which takes care of additional complexities brought about by the top-down directed approach, as opposed to the conventional bottom-up fixpoint computation.
The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, nonfailure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas.
The &-Prolog system, a practical implementation of a parallel execution niodel for Prolog exploiting strict and non-strict independent and-parallelism, is described. Both automatic and manual parallelization of programs is supported. This description includes a summary of the system's language and architecture, some details of its execution model (based on the RAP-WAM model), and data on its performance on sequential workstations and shared memory multiprocessors, which is compared to that of current Prolog systems. The results to date show significant speed advantages over state-of-the-art sequential systems.
In an advanced program development environment, such as that discussed in the introduction of this book, several tools may coexist which handle both the program and information on the program in different ways. Also, these tools may interact among themselves and with the user. Thus, the different tools and the user need some way to communicate. It is our design principie that such communication be performed in terms of assertions. Assertions are syntactic objects which allow expressing properties of programs. Several assertion languages have been used in the past in different contexts, mainly related to program debugging. In this chapter we propose a general language of assertions which is used in different tools for validation and debugging of constraint logic programs in the context of the DiSCiPl project. The assertion language proposed is parametric w.r.t. the particular constraint domain and properties of interest being used in each different tool. The language proposed is quite general in that it poses few restrictions on the kind of properties which may be expressed. We believe the assertion language we propose is of practical relevance and appropriate for the different uses required in the tools considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.