Structural and topological information play a key role in modeling flow and transport through fractured rock in the sub-surface. Discrete fracture Restricting the flowing fracture network to this backbone provides a significant reduction in the network's effective size. However, the particle tracking simulations needed to determine the reduction are computationally intensive. Such methods may be impractical for large systems or for robust uncertainty quantification of fracture networks, where thousands of forward simulations are needed to bound system behavior.In this paper, we develop an alternative network reduction approach to characterizing transport in DFNs, by combining graph theoretical and machine learning methods. We consider a graph representation where nodes signify fractures and edges denote their intersections. Using random forest and support vector machines, we rapidly identify a subnetwork that captures the flow patterns of the full DFN, based primarily on node centrality features in the graph. Our supervised learning techniques train on particle-tracking backbone paths found by dfnWorks, but run in negligible time compared to those simulations. We find that our predictions can reduce the network to approximately 20% of its original size, while still generating breakthrough curves consistent with those of the original network.
Coastal dissolved oxygen (DO) concentrations have a profound impact on nearshore ecosystems and, in recent years, there has been an increased prevalance of low DO hypoxic events that negatively impact nearshore organisms. Even with advanced numerical models, accurate prediction of coastal DO variability is challenging and computationally expensive. Here, we apply machine learning techniques in order to reconstruct and predict nearshore DO concentrations in a small coastal embayment while using a comprehensive set of nearshore and offshore measurements and easily measured input (training) parameters. We show that both random forest regression (RFR) and support vector regression (SVR) models accurately reproduce both the offshore DO and nearshore DO with extremely high accuracy. In general, RFR consistently peformed slightly better than SVR, the latter of which was more difficult to tune and took longer to train. Although each of the nearshore datasets were able to accurately predict DO values using training data from the same site, the model only had moderate success when using training data from one site to predict DO at another site, which was likely due to the the complexities in the underlying dynamics across the sites. We also show that high accuracy can be achieved with relatively little training data, highlighting a potential application for correcting time series with missing DO data due to quality control or sensor issues. This work establishes the ability of machine learning models to accurately reproduce DO concentrations in both offshore and nearshore coastal waters, with important implications for the ability to detect and indirectly measure coastal hypoxic events in near real-time. Future work should explore the ability of machine learning models in order to accurately forecast hypoxic events.
The General Curvilinear Coastal Ocean Model (GCCOM) is a 3D curvilinear, structured-mesh, non-hydrostatic, large-eddy simulation model that is capable of running oceanic simulations. GCCOM is an inherently computationally expensive model: it uses an elliptic solver for the dynamic pressure; meter-scale simulations requiring memory footprints on the order of 10 12 cells and terabytes of output data. As a solution for parallel optimization, the Fortran-interfaced Portable–Extensible Toolkit for Scientific Computation (PETSc) library was chosen as a framework to help reduce the complexity of managing the 3D geometry, to improve parallel algorithm design, and to provide a parallelized linear system solver and preconditioner. GCCOM discretizations are based on an Arakawa-C staggered grid, and PETSc DMDA (Data Management for Distributed Arrays) objects were used to provide communication and domain ownership management of the resultant multi-dimensional arrays, while the fully curvilinear Laplacian system for pressure is solved by the PETSc linear solver routines. In this paper, the framework design and architecture are described in detail, and results are presented that demonstrate the multiscale capabilities of the model and the parallel framework to 240 cores over domains of order 10 7 total cells per variable, and the correctness and performance of the multiphysics aspects of the model for a baseline experiment stratified seamount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.