Sequential cleavages of the β‐amyloid precursor protein cleaving enzyme 1 (BACE1) by β‐secretase and γ‐secretase generate the amyloid β‐peptides, believed to be responsible of synaptic dysfunction and neuronal cell death in Alzheimer’s disease (AD). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. Here we show that oxidative stress (OS) stimulates BACE1 expression by a mechanism requiring γ‐secretase activity involving the c‐jun N‐terminal kinase (JNK)/c‐jun pathway. BACE1 levels are increased in response to OS in normal cells, but not in cells lacking presenilins or amyloid precursor protein. Moreover, BACE1 is induced in association with OS in the brains of mice subjected to cerebral ischaemia/reperfusion. The OS‐induced BACE1 expression correlates with an activation of JNK and c‐jun, but is absent in cultured cells or mice lacking JNK. Our findings suggest a mechanism by which OS induces BACE1 transcription, thereby promoting production of pathological levels of amyloid β in AD.
While it is well established that stroke and cerebral hypoperfusion are both significant risk factors for Alzheimer’s disease, the molecular link between ischemia and amyloid precursor protein processing has only been recently established. Specifically, hypoxia significantly increases β‐site APP cleaving enzyme (BACE1) gene transcription through the over‐expression of hypoxia inducible factor 1α, resulting in increased BACE1 secretase activity and amyloid‐β production. In this study, we significantly extend these findings both in vitro, in differentiated SK‐N‐BE neuroblastoma cells, and in vivo, in rats subjected to cerebral ischemia, showing that hypoxia up‐regulates BACE1 expression through a biphasic mechanism. The early post‐hypoxic up‐regulation of BACE1 depends on the production of reactive oxygen species mediated by the sudden interruption of the mitochondrial electron transport chain, while the later expression of BACE1 is caused by hypoxia inducible factor 1α activation. The involvement of reactive oxygen species released by mitochondria in the BACE1 up‐regulation was confirmed by the complete protection exerted by complex I inhibitors such as rotenone and diphenyl‐phenylen iodonium. Moreover, the oxidative stress‐mediated up‐regulation of BACE1 is mediated by c‐jun N terminal kinase pathway as demonstrated by the protection exerted by the silencing of c‐jun N‐terminal kinase isoforms 1 and 2. Our study strengthens the hypothesis that oxidative stress is a basic common mechanism of amyloid‐β accumulation.
The rapid increase in metabolic diseases, which occurred in the last three decades in both industrialized and developing countries, has been related to the rise in sugar-added foods and sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be ingested with high temperature processed foods, but also endogenously formed as a consequence of a high dietary sugar intake. Animal models of high sugar consumption, in particular fructose, have reported AGE accumulation in different tissues in association with peripheral insulin resistance and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid and effective glycating agents when compared to other sugars has prompted the investigation of the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as sweetener has been ascribed by many experimental and observational studies for the enhancement of lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and mitochondrial metabolism. Moreover, emerging evidence also in humans suggest that this impact of dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver, skeletal and cardiac muscle, and the brain, affecting not only metabolic control, but global health. Indeed, the most recent reports on the effects of high sugar consumption and diet-derived AGEs on human health reviewed here suggest the need to limit the dietary sources of AGEs, including added sugars, to prevent the development of metabolic diseases and related comorbidities.
Diabetic encephalopathy, characterized by impaired cognitive functions and neurochemical and structural abnormalities, may involve direct neuronal damage caused by intracellular glucose. The study assesses the direct effect of chronic hyperglycemia on the function of brain mitochondria, the major site of reactive species production, in diabetic streptozotocin (STZ) rats. Oxidative stress plays a central role in diabetic tissue damage. Alongside enhanced reactive oxygen species (ROS) levels, both nitric oxide (NO) levels and mitochondrial nitric oxide synthase expression were found to be increased in mitochondria, whereas glutathione (GSH) peroxidase activity and manganese superoxide dismutase protein content were reduced. GSH was reduced and GSH disulfide (GSSG) was increased in STZ rats. Oxidative and nitrosative stress, by reducing the activity of complexes III, IV and V of the respiratory chain and decreasing ATP levels, might contribute to mitochondrial dysfunction. In summary, this study offers fresh evidence that, besides the vasculardependent mechanisms of brain dysfunction, oxidative and nitrosative stress, by damaging brain mitochondria, may cause direct injury of neuronal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.