While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10-30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15-10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.
We test the morphology based hypothesis that the Western Palaearctic spurge hawkmoths represent two species, the Eurasian H. euphorbiae and Afro-Macaronesian H. tithymali. It has been suggested that these species merged into several hybrid swarm populations, although a mitochondrial phylogeography revealed substructure with local differentiation. We analysed a three-gene mt-dataset (889 individuals) and 12 microsatellite loci (892 individuals). Microsatellite analyses revealed an overall weak differentiation and corroborated the superordinate division into two clusters. The data indicate that the populations studied belong to only one species according to the biological species concept, refuting the opening hypothesis. A future taxonomic revision appears necessary to reflect the division into two subgroups. Ancestral mitochondrial polymorphisms are retained in H. euphorbiae, indicating gene flow within a broad ‘glacial refuge belt’ and ongoing postglacial gene flow. Diverse patterns of extensive mito-nuclear discordance in the Mediterranean and the Middle East presumably evolved by more recent processes. This discordance indicates introgression of H. tithymali-related mitochondrial haplogroups, accompanied (to a lesser degree) by nuclear alleles, into Italian and Aegean H. euphorbiae populations as recently as the late Holocene. The complex mosaic of divergence and reintegration is assumed to have been influenced by locally differing environmental barriers to gene flow.
Within the citizen science project “Flowering meadows for Saxonian butterflies”, more than 640 meadows are partially and at maximum three times annually mowed in order to change urban lawns into habitats for insects. In 2019, insect diversity was evaluated using the 100 sweep net technique during five visits at nine butterfly meadows (BM) and nine intensively mowed lawns (IML). The mean arthropod biomass of these five visits per site is significantly higher on BM compared to IML. All adult individuals of Apidae, Coleoptera, Heteroptera, Orthoptera, Papilionoidea as well as Asilidae and Syrphidae have been identified morphologically, revealing 260 species from all study sites. The mean number of species per visit is significantly higher on BM compared to IML. 90 species are recorded as larva and the mean number of species per visit is significantly higher on BM compared to IML. 42 species are recorded as larva as well as adult. The records of larvae provide evidence for reproduction on the meadows. Implications for insect conservation Our results clearly demonstrate that a reduced mowing frequency together with an always partial mowing of the area support higher biomass, abundances and diversities of insects as well as reproduction of insects on urban lawns. Therefore, reduced mowing frequency together with partial mowing is recommended for urban lawns as well as meadows in the countryside and conservation areas to foster insect diversity.
Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26-AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male-specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.