The retina represents an ideal model system for studying developmental processes during morphogenesis. The knowledge of the precise regulation and combination of genetic pre-dispositions and environmental circumstances enables the understanding of pathologies and the subsequent development or/and improvement of therapeutic strategies. This study focused on the functional analysis of the extracellular matrix (ECM) molecule Tenascin C (Tnc) in the retinal stem/progenitor cell environment. In this perspective, a Tnc(-/-) mouse was examined for potential alterations in proliferation and differentiation programs by using immunohistochemistry, RT-PCR analysis and bioassays. It could be shown that both cycling G2-phase cells and early post-mitotic neurons were significantly increased in the retina due to Tnc-deficiency. Further investigations suggested that Tnc regulates these processes via the Wnt-signaling cascade. Therapeutic approaches in the treatment of degenerative diseases often integrate cell-replacement strategies. Retinal Müller glia cells represent the glia of the retina and are described to possess the ability to re-enter the cell cycle and generate neurons in response to injury. In this study, the de-differentiation was induced by FGF2. It was found out that Tnc influences the de-differentiation behavior of adherent Müller glia in vitro. Moreover, it was interesting to investigate the effect of the absence of Tnc on the composition of other components of the ECM. A special focus lay on the expression of a specifically sulfated carbohydrate motif on chondroitin sulfate glycosaminoglycan chains, which can be detected with the mAb 473HD. It was possible to note a significant increase of this particular chondroitin sulfate in the Tnc-deficient ECM.
We conclude that raising endogenous S1P levels exerts anti-atherogenic effects in LDL-R mice that are mediated by favourable modulation of endothelial function.
The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.