Cell-based drug screenings indicate that tumors displaying c-MET gene amplification are "addicted" to MET signaling and therefore are very sensitive to MET-targeted agents. However, these screenings were conducted in the absence of the MET ligand, hepatocyte growth factor (HGF), which is abundant in the tumor microenvironment. Sensitivity of six MET-addicted human tumor cells to three MET kinase inhibitors (JNJ-38877605, PHA-665752, crizotinib) and one antagonistic anti-MET antibody (DN30 Fab) was analyzed in the absence or presence of HGF, in a stroma-tumor coculture system, and by combining anti-MET drugs with an HGF neutralizing antibody (ficlatuzumab) in human HGF knock-in mice bearing c-MET-amplified tumors. In all models examined, HGF promoted resistance to MET-targeted agents, affecting both their potency and efficacy. HGF-induced resistance was due to restoration of physiologic GAB1-mediated PI3K activation that compensated for loss of aberrant HER3-dependent PI3K signaling. Ficlatuzumab restored sensitivity to MET-targeted agents in coculture systems and overcame resistance to JNJ-38877605, crizotinib, and DN30 Fab in human HGF knock-in mice. These data suggest that c-MET-amplified tumor cells-which normally exhibit ligand-independent, constitutive MET activation-become dependent on HGF for survival upon pharmacologic MET inhibition. Because HGF is frequently overexpressed in human cancer, this mechanism may represent a major cause of resistance to anti-MET therapies. The ability of ficlatuzumab to overcome HGF-mediated resistance generates proof of principle that vertical inhibition of both a tyrosine kinase receptor and its ligand can be therapeutically beneficial and opens new perspectives for the treatment of MET-dependent tumors. Cancer Res; 74(22); 6598-609. Ó2014 AACR.
Small‐for‐size syndrome (SFSS) is a common complication following partial liver transplantation and extended hepatectomy. SFSS is characterized by postoperative liver dysfunction caused by insufficient regenerative capacity and portal hyperperfusion and is more frequent in patients with preexisting liver disease. We explored the effect of the Mesenchymal‐epithelial transition factor (MET)‐agonistic antibody 71D6 on liver regeneration and functional recovery in a mouse model of SFSS. Male C57/BL6 mice were exposed to repeated carbon tetrachloride injections for 10 weeks and then randomized into 2 arms receiving 3 mg/kg 71D6 or a control immunoglobulin G (IgG). At 2 days after the randomization, the mice were subjected to 70% hepatectomy. Mouse survival was recorded up to 28 days after hepatectomy. Satellite animals were euthanized at different time points to analyze liver regeneration, fibrosis, and inflammation. Serum 71D6 administration significantly decreased mouse mortality consequent to insufficient regeneration of the cirrhotic liver. Analysis of liver specimens in satellite animals revealed that 71D6 promoted powerful activation of the extracellular signal‐regulated kinase pathway and accelerated liver regeneration, characterized by increased liver‐to‐body weight, augmented mitotic index, and higher serum albumin levels. Moreover, 71D6 accelerated the resolution of hepatic fibrosis as measured by picrosirius red, desmin, and α–smooth muscle actin staining, and suppressed liver infiltration by macrophages as measured by CD68 and F4/80 staining. Analysis of gene expression by reverse‐transcription polymerase chain reaction confirmed that 71D6 administration suppressed the expression of key profibrotic genes, including platelet‐derived growth factor, tissue inhibitor of metalloproteinase 3, and transforming growth factor‐β1, and of key proinflammatory genes, including tumor necrosis factor‐α, interleukin‐1β, chemokine (C‐C motif) ligand 3, and chemokine (C‐C motif) ligand 5. These results suggest that activating the MET pathway via an hepatocyte growth factor–mimetic antibody may be beneficial in patients with SFSS and possibly other types of acute and chronic liver disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.