Naturally occurring variation in gene copy number is increasingly recognized as a heritable source of susceptibility to genetically complex diseases. Here we report strong association between FCGR3B copy number and risk of systemic lupus erythematosus (P = 2.7 × 10 -8 ), microscopic
Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain.Temporal-lobe epilepsy is the most common type of focal epilepsy. It is sometimes associated with structural brain lesions, but genetic forms have also been described. Familial temporal-lobe epilepsy comprises two genetically distinct syndromes: familial mesial temporal-lobe epilepsy (FMTLE [MIM: 611630]) 1 and autosomal-dominant lateral temporal epilepsy (ADLTE [MIM: 600512]), also named autosomal-dominant partial epilepsy with auditory features (ADPEAF). 2 ADLTE is a well-defined epileptic syndrome clinically characterized by focal seizures with prominent auditory and/or aphasic symptoms, normal brain MRI, and relatively benign evolution. 2,3 Its inheritance pattern is autosomal dominant with reduced penetrance (around 70%). Mutations associated with ADLTE are found in leucine-rich, glioma inactivated 1 (LGI1 [MIM: 604619]) 4-6 in 30%-50% of ADLTE-affected families. 3,7,8 Other genes harboring ADLTE-causing mutations are unknown.LGI1 is expressed mainly in neurons, particularly in the neocortex and limbic regions, 4,9 and its protein product, LGI1, is secreted. 9 LGI1 has been implicated in the transmission of K þ and AMPA synaptic currents 10,11 and in the regulation of post-natal maturation of cortical excitatory synapses and dendrite pruning. 12 However, it is not known which of these functions underlies ADLTE. Identification of additional genes whose mutations cause ADLTE will help to clarify the pathoge...
Variation in gene copy number is increasingly recognized as a common, heritable source of inter-individual differences in genomic sequence. The role of copy number variation is well established in the pathogenesis of rare genomic disorders. More recently, germline and somatic copy number variation have been shown to be important pathogenic factors in a range of common diseases, including infectious, autoimmune and neuropsychiatric diseases and cancer. In this review, we describe the range of methods available for measuring copy number variants (CNVs) in individuals and populations, including the limitations of presently available assays, and highlight some key examples of common diseases in which CNVs have been shown clearly to have a pathogenic role. Although there has been major progress in this field in the last 5 years, understanding the full contribution of CNVs to the genetic basis of common diseases will require further studies, with more accurate CNV assays and larger cohorts than have presently been completed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.