By using a quasi-stationary approach, we consider the mass evolution of Schwarzschild black holes in the presence of a nonminimally coupled cosmological scalar field. The mass evolution equation is analytically solved for generic coupling, revealing a qualitatively distinct behavior from the minimal coupling case. In particular, for black hole masses smaller than a certain critical value, the accretion of the scalar field can lead to mass decreasing even if no phantom energy is involved. The physical validity of the adopted quasi-stationary approach and some implications of our result for the evolution of primordial and astrophysical black holes are discussed. More precisely, we argue that black hole observational data could be used to place constraints on the nonminimally coupled energy content of the universe.Comment: 6 pages, final version to appear in PR
The mass evolution of Schwarzschild black holes by the absorption of scalar fields is investigated in the scenario of the generalized Chaplygin gas (GCG). The GCG works as a unification picture of dark matter plus dark energy that naturally accelerates the expansion of the Universe. Through elements of the quasi-stationary approach, we consider the mass evolution of Schwarzschild black holes accreted by non-minimally coupled cosmological scalar fields reproducing the dynamics of the GCG. As a scalar field non-minimally coupled to the metrics, such an exotic content has been interconnected with accreting black holes. The black hole increasing masses by the absorption of the gas reflects some consistence of the accretion mechanism with the hypothesis of the primordial origin of supermassive black holes. Our results effectively show that the non-minimal coupling with the GCG dark sector accelerates the increasing of black hole masses. Meanwhile some exotic features can also be depicted for specific ranges of the non-minimal coupling in which the GCG dynamics is substantially modified.
Abstract.Inspired by a previous work by McClure and Dyer (Class. Quantum Grav. 23, 1971 (2006)), we analyze some solutions of the Einstein-Maxwell equations which were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and then we focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged Sultana-Dyer metric requires a global electric current, besides a central (spherically symmetric) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD types are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric the black hole horizon never forms, whereas in the new generalized Sultana-Dyer case both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged Sultana-Dyer case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.
Quase todas as informações que temos do cosmos chegaram até nós através de ondas eletromagnéticas de uma forma ou de outra. Para interpretar as informações recebidas, precisamos entender o que acontece com a luz neste caminho. Para isto, analisamos as estruturas causais com intuito de dissolver as dúvidas e mal entendidos com respeito aos horizontes cosmológicos. Palavras-chave: horizontes cosmológicos, universo em expansão, energia escura.Almost all the information we have of the cosmos came to us through electromagnetic waves in one form or another. To interpret the information received, we must understand what happens to light in this way. For this, we analyzed the causal structures with intent to dissolve the doubts and misunderstandings with respect to the cosmological horizons. Keywords: cosmological horizons, expanding universe, dark energy. IntroduçãoO cenário cosmológico modificou-se muitos nosúltimos anos. Desde os anos 90, fortes evidências observacionais vêm se acumulando, mostrando que o Universoé espacialmente plano, dominado por uma energia e matéria escuras e passa por uma fase de expansão acelerada. A observação de efeitos de lentes gravitacionais constitui não somente evidência da matéria escura, como também uma confirmação da Teoria da Relatividade Geral sobre o comportamento da luz. Do mesmo modo, a descoberta da expansão acelerada surgiu com a medida da luminosidade aparente das supernovas do tipo Ia [1,2].Estas informações vieram até nós como fótons e este caminho pode ser compreendido através das estruturas causais que definem as conexões entre os eventos acontecendo no Universo e nós.Um eventoé um acontecimento no espaço-tempo. Você tomar um caféá tarde, quando estudar começa pesar-lhe,é um evento. Em qualquer espaço-tempo, um evento ocorre em uma posiçãoúnica e em um instante de tempoúnico. Um evento nada maisé que um ponto no espaço-tempo. Este evento pode evoluir ao longo do tempo, assim podemos descrever uma sequência de pontos, ou melhor, de eventos acontecendo no espaço-tempo. Esta sucessão de pontos descreve um linha a qual denominamos linha do Universo ou linha mundo do processo físico. Em outras palavras, o caminho percorrido por uma partícula livre ou um fóton no espaço-tempoé denominado linha mundo [3].Figura 1 -Evolução de um determinado processo físico ao longo do espaço-tempo -linha mundo.Vejamos, você tomou uma xícara de café, encontrou seus amigos na cantina, conversou, voltou a estudar e compreendeu a matéria. Esses eventos desenvolvem-se sob uma linha mundo que descreve a evolução temporal dessa parte do seu dia, embora cada um deles, separadamente constitua uma linha mundo diferente.Esta evolução temporal dos acontecimentos leva a um conceito importante, a noção de causalidade. Sabemos que toda causa tem um efeito, e que a estrutura
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.