Summary
Assessment of infection is an essential part of many studies involving VA mycorrhiza. A summary is given of the range of techniques that have been used. We calculated the standard error of four methods of assessment based on observations of stained root samples either randomly arranged in a petri dish or mounted on microscope slides. The methods are based on presence or absence of infection at root/grid intersect points, on a visual estimate of percentage cortex occupied by fungus or on estimates of length, or presence or absence of infection in root pieces mounted on slides. The number of replicate observations required for a given standard error % infection can be read from the curves provided. The advantages of the different methods of assessment are discussed and reasons given why they all probably overestimate the true values.
Summary• The widespread occurrence of anastomoses and nuclear migration in intact extraradical arbuscular mycorrhizal (AM) networks is reported here.• Visualization and quantification of intact extramatrical hyphae spreading from colonized roots into the surrounding environment was obtained by using a twodimensional experimental model system.• After 7 d the length of extraradical mycelium in the AM symbiont Glomus mosseae ranged from 5169 mm in Thymus vulgaris to 7096 mm in Prunus cerasifera and 7471 mm in Allium porrum , corresponding to 10, 16 and 40 mm mm − 1 root length, respectively. In mycelium spreading from colonized roots of P. cerasifera and T. vulgaris , contacts leading to hyphal fusion were 64% and 78%, with 0.46 and 0.51 anastomoses mm − 1 of hypha, respectively. Histochemical localization of succinate dehydrogenase activity in hyphal bridges demonstrated protoplasmic continuity, while the detection of nuclei in the hyphal bridges confirmed the viability of anastomosed hyphae.• The ability of AM extraradical mycelium to form anastomosis and to exchange nuclei suggests that, beyond the nutritional flow, an information flow might also be active in the network.
Summary• Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.• Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.• Pairs of genetically different isolates were then co-cultured in an in vitro system. Freshly produced spores were individually germinated to establish new cultures. Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.• Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plant symbionts.
A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.