We study the distribution of the smallest eigenvalue for certain classes of positive-definite Hermitian random matrices, in the limit where the size of the matrices becomes large. Their limit distributions can be expressed as Fredholm determinants of integral operators associated to kernels built out of Meijer G-functions or Wright's generalized Bessel functions. They generalize in a natural way the hard edge Bessel kernel Fredholm determinant. We express the logarithmic derivatives of the Fredholm determinants identically in terms of a 2×2 Riemann-Hilbert problem, and use this representation to obtain the so-called large gap asymptotics.
We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit $$N\rightarrow + \infty $$ N → + ∞ of a gas of N-solitons. We show that this gas of solitons in the limit $$N\rightarrow \infty $$ N → ∞ is slowly approaching a cnoidal wave solution for $$x \rightarrow - \infty $$ x → - ∞ up to terms of order $$\mathcal {O} (1/x)$$ O ( 1 / x ) , while approaching zero exponentially fast for $$x\rightarrow +\infty $$ x → + ∞ . We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions.
We study Fredholm determinants of a class of integral operators, whose kernels can be expressed as double contour integrals of a special type. Such Fredholm determinants appear in various random matrix and statistical physics models. We show that the logarithmic derivatives of the Fredholm determinants are directly related to solutions of the Painlevé II hierarchy. This confirms and generalizes a recent conjecture by Le Doussal, Majumdar, and Schehr [20]. In addition, we obtain asymptotics at ±∞ for the Painlevé transcendents and large gap asymptotics for the corresponding point processes.arXiv:1902.05595v2 [math-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.