Surface electromyography (sEMG) is a non-invasive measure of electrical activity generated due to muscle contraction. In recent years, sEMG signals have been increasingly used in diverse applications such as rehabilitation, pattern recognition, and control of orthotic and prosthetic systems. This study presents the development of a versatile multi-channel sEMG low-cost wearable band system to acquire 4 signals. In this case, the signals acquired with the proposed device have been used to detect hand movements. However, the WyoFlex band could be used in some sections of the arm or the leg if the section’s diameter matches the diameter of the WyoFlex band. The designed WyoFlex band was fabricated using three-dimensional (3D) printing techniques employing thermoplastic polyurethane and polylactic acid as manufacturing materials. Then, the proposed wearable electromyographic system (WES) consists of 2 WyoFlex bands, which simultaneously allow the wireless acquisition of 4 sEMG channels of each forearm. The collected sEMG can be visualized and stored for future post-processing stages using a graphical user interface designed in Node-RED. Several experimental tests were conducted to verify the performance of the WES. A dataset with sEMG collected from 15 healthy humans has been obtained as part of the presented results. In addition, a classification algorithm based on artificial neural networks has been implemented to validate the usability of the collected sEMG signals.
This work provides a complete dataset containing surface electromyography (sEMG) signals acquired from the forearm with a sampling frequency of 1000 Hz. The dataset is named WyoFlex sEMG Hand Gesture and recorded the data of 28 participants between 18 and 37 years old without neuromuscular diseases or cardiovascular problems. The test protocol consisted of sEMG signals acquisition corresponding to ten wrist and grasping movements (extension, flexion, ulnar deviation, radial deviation, hook grip, power grip, spherical grip, precision grip, lateral grip, and pinch grip), considering three repetitions for each gesture. Also, the dataset contains general information such as anthropometric measures of the upper limb, gender, age, laterally of the person, and physical condition. Likewise, the implemented acquisition system consists of a portable armband with four sEMG channels distributed equidistantly for each forearm. The database could be used for the recognition of hand gestures, evaluation of the evolution of patients in rehabilitation processes, control of upper limb orthoses or prostheses, and biomechanical analysis of the forearm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.