Transgenic tobacco and Arabidopsis thaliana expressing the bacterial enzyme salicylate hydroxylase cannot accumulate salicylic acid (SA). This defect not only makes the plants unable to induce systemic acquired resistance, but also leads to increased susceptibility to viral, fungal, and bacterial pathogens. The enhanced susceptibility extends even to host-pathogen combinations that would normally result in genetic resistance. Therefore, SA accumulation is essential for expression of multiple modes of plant disease resistance.
Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its role is lacking. In this report, we demonstrate that constitutive high-level expression of PR-1a in transgenic tobacco results in tolerance to infection by two oomycete pathogens, Peronospora tabacina and Phytophthora parasitica var. nicotianae.
We studied the effect of constitutive expression of pathogenesis-related proteins (PRs) in tobacco plants on vesicular-arbuscular mycorrhiza. Tobacco lines genetically transformed to express various PRs constitutively under the control of the cauliflower mosaic virus 35S promoter of tobacco were examined. Immunoblot analysis and activity measurements demonstrated high levels of expression of the PRs in the root systems of the plants. Constitutive expression of the following acidic isoforms of tobacco PRs did not affect the time course or the final level of colonization by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae: PR-1a, PR-3 (؍PR-Q), PR-Q, PR-4, and PR-5. Similarly, constitutive expression of an acidic cucumber chitinase, of a basic tobacco chitinase with and without its vacuolar targeting peptide, of a basic -1,3-glucanase, and of combinations of PR-Q and PR-Q or basic chitinase and basic -1,3-glucanase did not affect colonization by the mycorrhizal fungus. A delay of colonization by G. mosseae was observed in tobacco plants constitutively expressing the acidic isoform of tobacco PR-2, a protein with -1,3-glucanase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.