The aim of this work was to study the interaction between high‐density polyethylene (HDPE) grades as material for dangerous goods packagings and biofuels such as E85 and biodiesel. Jerricans made of two polyethylene (PE) grades were filled with these fuels and exposed to temperatures of 20°C and 40°C for 1 year. Tensile properties (tensile strength, breaking elongation and elasticity modulus) and melt flow rate (MFR) were determined once a month, and Fourier transform infrared (FTIR) spectroscopy was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properties of the PE grades after 1 year of exposure to E85 showed only a slightly damaging influence. An increase in the peak of 1585 cm‐1 (C=C) stretching vibrations is visible in the FTIR spectra after the immersion tests with E85. Therefore, packagings made of HDPE grades are suitable for the transport of E85. An increase in the MFR with immersion time of the grades in biodiesel was measured, in particular, after 1 year of exposure. The elasticity modulus of the PE grades was reduced with immersion time. The FTIR spectra showed a broadening of the CO peak of 1740 cm‐1 and the appearance of the hydroxyl group at 3500 cm‐1. Both results are explained by secondary degradation products of the PE decomposition process caused by increasing unsaturated fatty acid content in the biodiesel. In light of the above mentioned, it was concluded that HDPE grades are not suitable as packaging materials for the transport of biodiesel. Copyright © 2013 John Wiley & Sons, Ltd.
The objective of this research was to determine the resistance of frequently used sealing materials such as fluorocarbon rubber (FKM), fluorosilicone rubber (FVMQ), silicone rubber (VMQ), ethylene‐propylene‐diene rubber (EPDM), chloroprene rubber (CR), chlorosulfonated polyethylene (CSM), butyl rubber (IIR), acrylonitrile butadiene rubber (NBR), polyester urethane rubber (PUR) and polyamide (PA) in non‐aged/aged biodiesel and heating oil with 10 % biodiesel at 20 °C, 40 °C and 70 °C. Mass, tensile properties and shore hardness A/D (for polyamide) of the test specimens were determined before and after the exposure for 84/42 days in the aged and non‐aged fuels of different age. Biodiesel fuels are easily oxidized and contain acids and water. The sealing materials: acrylonitrile butadiene rubber, butyl rubber, chloroprene rubber, chlorosulfonated polyethylene and ethylene‐propylene‐diene rubber and were generally not resistant to biodiesel and heating oil with 10 % biodiesel. Fluorocarbon rubber, fluorosilicone rubber and polyamide were the most resistant materials in all tested fuels up to 70 °C. The degree of damage to the sealing materials increased with higher test temperatures and the age of the fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.