Quadruple wild-type (WT) gastrointestinal stromal tumor (GIST) is a genomic subgroup lacking KIT/PDGFRA/RAS pathway mutations, with an intact succinate dehydrogenase (SDH) complex. The aim of this work is to perform a wide comprehensive genomic study on quadruple WT GIST to improve the characterization of these patients. We selected 14 clinical cases of quadruple WT GIST, of which nine cases showed sufficient DNA quality for whole exome sequencing (WES). NF1 alterations were identified directly by WES. Gene expression from whole transcriptome sequencing (WTS) and miRNA profiling were performed using fresh-frozen, quadruple WT GIST tissue specimens and compared with SDH and KIT/PDGFRA-mutant GIST. WES identified an average of 18 somatic mutations per sample. The most relevant somatic oncogenic mutations identified were in TP53, MEN1, MAX, FGF1R, CHD4, and CTDNN2. No somatic alterations in NF1 were identified in the analyzed cohort. A total of 247 mRNA transcripts and 66 miRNAs were differentially expressed specifically in quadruple WT GIST. Overexpression of specific molecular markers (COL22A1 and CALCRL) and genes involved in neural and neuroendocrine lineage (ASCL1, Family B GPCRs) were detected and further supported by predicted miRNA target analysis. Quadruple WT GIST show a specific genetic signature that deviates significantly from that of KIT/PDGFRA-mutant and SDH-mutant GIST. Mutations in MEN1 and MAX genes, a neural-committed phenotype and upregulation of the master neuroendocrine regulator ASCL1, support a genetic similarity with neuroendocrine tumors, with whom they also share the great variability in oncogenic driver genes. This study provides novel insights into the biology of quadruple WT GIST that potentially resembles neuroendocrine tumors and should promote the development of specific therapeutic approaches. .
BackgroundPeriodontitis is a multi-factorial disease and several risk-factors such as infections, inflammatory responses, oral hygiene, smoke, aging and individual predisposition are involved in the disease. Pathogens trigger chronic inflammation with cytokines release which in turn leads to the destruction of the connective and the teeth supporting bone. The identification of genetic factors controlling oral inflammation may increase our understanding of genetic predisposition to periodontitis.Single nucleotide polymorphisms in the promoter region of Vascular Endothelial Growth Factor, Alpha-1-Antichymotripsin, hydroxy-methyl-glutaryl CoA reductase, Interferon alpha, Interleukin-1 Beta, Interleukin 10, Interleukin 6 and Tumor Necrosis Factor- alpha genes from a case/control study were investigated.ResultsThe C allele of Vascular Endothelial Growth Factor, A allele of Interleukin 10 and GG genotype of Tumor Necrosis Factor-α were individually associated with chronic periodontitis. However, the concomitant presence of the three genetic markers in the same subjects appeared to play a synergistic role and increased several folds the risk of the disease.ConclusionsOur findings offer new tools to implement the screening of unaffected subjects with an increased susceptibility of periodontitis and increase our understanding regarding the genetic inflammatory background related to familiarity of the disease.
BackgroundRecent findings from a genome wide association investigation in a large cohort of patients with Alzheimer's disease (AD) and non demented controls (CTR) showed that a limited set of genes was in a strong association (p > l0-5) with the disease.Presentation of the hypothesisIn this report we suggest that the polymorphism association in 8 of these genes is consistent with a non conventional interpretation of AD etiology.Nectin-2 (NC-2), apolipoprotein E (APOE), glycoprotein carcinoembryonic antigen related cell adhesion molecule- 16 (CEACAM-16), B-cell lymphoma-3 (Bcl-3), translocase of outer mitochondrial membrane 40 homolog (T0MM-40), complement receptor-1 (CR-l), APOJ or clusterin and C-type lectin domain A family-16 member (CLEC-16A) result in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging, leading to neuronal loss, inflammation and amyloid deposition.Implications of the hypothesisWe hypothesized that such genetic trait may predispose to AD via complex and diverse mechanisms each contributing to an increase of individual susceptibility to brain viral infections
SNPs in VEGF, IL-10 and GNMT genes might have a synergistic role in the development of PCa. The GNMT T allele may influence PCa risk by affecting DNA methylation and prostate gene expression. Our observations might help implement the screening of unaffected subjects with an increased susceptibility to develop PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.