Complement-dependent cytotoxicity is thought to be an important mechanism of action of the anti-CD20 monoclonal antibody rituximab. This study investigates the sensitivity of freshly isolated cells obtained from 33 patients with B-cell chronic lymphocytic leukemia (B-CLL), 5 patients with prolymphocytic leukemia (PLL), and 6 patients with mantle cell lymphoma (MCL) to be lysed by rituximab and complement in vitro. The results showed that in B-CLL and PLL, the levels of CD20, measured by standard immunofluorescence or using calibrated beads, correlated linearly with the lytic response (coefficient greater than or equal to 0.9; P < .0001). Furthermore, the correlation remained highly significant when the 6 patients with MCL were included in the analysis (coefficient 0.91; P < .0001), which suggests that CD20 levels primarily determine lysis regardless of diagnostic group. The role of the complement inhibitors CD46, CD55, and CD59 was also investigated. All B-CLL and PLL cells expressed these molecules, but at different levels. CD46 was relatively weak on all samples (mean fluorescence intensity less than 100), whereas CD55 and CD59 showed variability of expression (mean fluorescence intensity 20-1200 and 20-250, respectively). Although CD55 and CD59 levels did not permit prediction of complement susceptibility, the functional block of these inhibitors demonstrated that they play an important role in regulating complement-dependent cytotoxicity. Thus, lysis of poorly responding B-CLL samples was increased 5-to 6-fold after blocking both CD55 and CD59, whereas that of high responders was essentially complete in the presence of a single blocking antibody. These data demonstrate that CD20, CD55, and CD59 are important factors determining the in vitro response to rituximab and complement and indicate potential strategies to improve the clinical response to this biologic therapy. (Blood. 2001;98:3383-3389)
The chimeric anti-CD20 MAb rituximab has recently become a treatment of choice for low-grade or follicular non-Hodgkin's lymphomas (FL) with a response rate of about 50%. In this report, we have investigated the mechanism of action of rituximab on 4 FL and 1 Burkitt's lymphoma (BL) cell lines, 3 fresh FL samples and normal B cells in vitro. Rituximab efficiently blocks the proliferation of normal B cells, but not that of the lymphoma lines. We did not detect significant apoptosis of the cell lines in response to rituximab alone. All cell lines were targets of antibody-dependent cellular cytotoxicity (ADCC). On the other hand, human complement-mediated lysis was highly variable between cell lines, ranging from 100% lysis to complete resistance. Investigation of the role of the complement inhibitors CD35, CD46, CD55, and CD59 showed that CD55, and to a lesser extent CD59, are important regulators of complement-mediated cytotoxicity (CDC) in FL cell lines as well as in fresh cases of FL: Blocking CD55 and/or CD59 function with specific antibodies significantly increased CDC in FL cells. We conclude that CDC and ADCC are major mechanisms of action of rituximab on B-cell lymphomas and that a heterogeneous susceptibility of different lymphoma cells to complement may be at least in part responsible for the heterogeneity of the response of different patients to rituximab in vivo. Furthermore, we suggest that the relative levels of CD55 and CD59 may become useful markers to predict the clinical response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.