Protein phosphorylation controls the activity of signal transduction pathways regulated by kinases and phosphatases. Little is known, however, about the impact of preanalytical factors, for example, delayed times to tissue fixation, on global phosphoprotein levels in tissues. The aim of this study was to characterize the potential effects of delayed tissue preservation (cold ischemia) on the levels of phosphoproteins using targeted and nontargeted proteomic approaches. Rat and murine liver samples were exposed to different cold ischemic conditions ranging from 10 to 360 min prior to cryopreservation. The phosphoproteome was analyzed using reverse phase protein array (RPPA) technology and phosphoprotein-enriched quantitative tandem mass spectrometry (LC-MS/MS). RPPA analysis of rat liver tissues with long (up to 360 min) cold ischemia times did not reveal statistically significant alterations of specific phosphoproteins even though nonphosphorylated cytokeratin 18 (CK18) showed increased levels after 360 min of delay to freezing. Keeping the samples on ice prior to cryopreservation prevented this effect. LC-MS/MS-based quantification of 1684 phosphorylation sites in rat liver tissues showed broadening of their distribution compared to time point zero, but without reaching statistical significance for individual phosphosites. Similarly, RPPA analysis of mouse liver tissues with short (<60 min) cold ischemia times did not reveal directed or predictable changes of protein and phosphoprotein levels. Using LC-MS/MS and quantification of 791 phosphorylation sites, we found that the distribution of ratios compared to time point zero broadens with prolonged ischemia times, but these were rather undirected and diffuse changes, as we could not detect significant alterations of individual phosphosites. On the basis of our results from RPPA and LC-MS/MS analysis of rat and mouse liver tissues, we conclude that prolonged cold ischemia results in unspecific phosphoproteome changes that can be neither predicted nor assigned to individual proteins. On the other hand, we identified a number of phosphosites which were extraordinarily stable even after 360 min of cold ischemia and, therefore, may be used as general reference markers for future companion diagnostics for kinase inhibitors.
Most growth factor receptors trigger phosphorylation-based signal transduction to translate environmental stimuli into defined biological responses. In addition to comprehensive and reliable assessment of growth factor-induced phosphoregulation, temporal resolution is needed to gain insights into the organizing principles of the cellular signaling machinery. Here, we introduce a refined experimental design for MS-based phosphoproteomics to reconcile the need for high comprehensiveness and temporal resolution with the key requirement of monitoring biological reproducibility. We treated SILAC-labeled SCC-9 cells with the seven transmembrane receptor ligand lysophosphatidic acid (LPA) and identified more than 17 000 phosphorylation sites. Filtering for biological replicate quantification yielded five-time point profiles for 6292 site-specific phosphorylations, which we analyzed for statistically significant regulation. Notably, about 30% of these sites changed significantly upon LPA stimulation, indicating extensive phosphoproteome regulation in response to this growth factor. Analysis of time series data identified distinct temporal profiles for different kinase substrate motifs, likely reflecting temporal orchestration of cellular kinase activities. Our data further indicated coordinated regulation of biological processes and phosphoprotein networks upon LPA stimulation. Finally, we detected regulation of functionally characterized phosphorylation sites not yet implicated in LPA signaling, which may foster a better understanding how LPA regulates cellular physiology on the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.