Recent studies suggest that circulating tumor cells and cell-free DNA may represent powerful non-invasive tools for monitoring disease in patients with solid and hematologic malignancies. Here, we conducted a pilot study in 27 myeloma patients to explore the clonotypic V(D)J rearrangement for monitoring circulating myeloma cells and cell-free myeloma DNA. Next-generation sequencing was used to define the myeloma V(D)J rearrangement and for subsequent peripheral blood tracking after treatment initiation. Positivity for circulating myeloma cells/cell-free myeloma was associated with conventional remission status (P<0.001) and 91% of non-responders/progressors versus 41% of responders had evidence of persistent circulating myeloma cells/cell-free myeloma DNA (P<0.001). About half of the partial responders showed complete clearance of circulating myeloma cells/cell-free myeloma DNA despite persistent M-protein, suggesting that these markers are less inert than the M-protein, rely more on cell turnover and, therefore, decline more rapidly after initiation of effective treatment. Positivity for circulating myeloma cells and for cell-free myeloma DNA were associated with each other (P=0.042), but discordant in 30% of cases. This indicates that cell-free myeloma DNA may not be generated entirely by circulating myeloma cells and may reflect overall tumor burden. Prospective studies need to define the predictive potential of high-sensitivity determination of circulating myeloma cells and DNA in the monitoring of multiple myeloma.
Acquired resistance to epidermal growth factor receptor (EGFR) targeted antibodies represents a clinical challenge in the treatment of gastrointestinal tumors such as metastatic colorectal cancer, but its molecular mechanisms are incompletely understood. We scanned KRAS exon 2/3/4, NRAS exon 2/3/4 and the overlapping epitopes of the EGFR antibodies cetuximab and panitumumab for mutations in pre- and post-treatment tumor tissue of 21 patients with gastrointestinal cancer treated with chemotherapy +/− EGFR antibodies by next-generation sequencing (“tumor tissue” cohort). We describe a novel EGFR exon 12 mutation acquired in tumors of 1 out of 3 patients treated with panitumumab. The EGFR G465R mutation introduces a positive charge within the overlap of the panitumumab and cetuximab epitopes. It abrogates antibody binding and mediates cross-resistance to both antibodies in EGFR G465R-transfected Ba/F3 cells. In circulating tumor DNA from an independent “liquid biopsy” cohort of 27 patients, we found this novel mutation in 1 out of 6 panitumumab-treated cases while about one third of patients show acquired RAS mutations. We show that acquired resistance by epitope-changing mutations also emerges during panitumumab treatment, which can be easily detected by a liquid biopsy approach even before clinical resistance occurs and this may help in tailoring EGFR-targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.