Shape sensing, i.e., reconstruction of the displacement field of a structure from surfacemeasured strains, has relevant implications for the monitoring, control and actuation of smart structures. The inverse finite element method (iFEM) is a shape-sensing methodology shown to be fast, accurate and robust. This paper aims to demonstrate that the recently presented iFEM for beam and frame structures is reliable when experimentally measured strains are used as input data. The theoretical framework of the methodology is first reviewed. Timoshenko beam theory is adopted, including stretching, bending, transverse shear and torsion deformation modes. The variational statement and its discretization with C 0-continuous inverse elements are briefly recalled. The three-dimensional displacement field of the beam structure is reconstructed under the condition that least-squares compatibility is guaranteed between the measured strains and those interpolated within the inverse elements. The experimental setup is then described. A thin-walled cantilevered beam is subjected to different static and dynamic loads. Measured surface strains are used as input data for shape sensing at first with a single inverse element. For the same test cases, convergence is also investigated using an increasing number of inverse elements. The iFEM-recovered deflections and twist rotations are then compared with those measured experimentally. The accuracy, convergence and robustness of the iFEM with respect to unavoidable measurement errors, due to strain sensor locations, measurement systems and geometry imperfections, are demonstrated for both static and dynamic loadings.
Large slope failures in steep alpine bedrock present significant geological hazards. Ice segregation is thought to be one of the mechanisms involved in high-mountain bedrock fracture but has not been reproduced experimentally in hard, intact rock. Here, we report results from a 3 month freezing experiment that aimed to reproduce ice-lens growth at the interface between the active layer and permafrost in a 15 cm cube of hard, intact rock (Arolla gneiss). Monitoring of acoustic emissions (AEs) recorded the propagation of microcracks horizontally through the block, resulting in a continuous and thick macrocrack near the base of the artificial active layer. Microcracking occurred within an approximate temperature range of À0.5°C to À2.7°C, consistent with ice segregation theory. Hypocentres of recorded AE events were concentrated in a 40 mm thick band between depths of 4.5 and 8 cm in the block. The band approximately coincides with the frozen fringe and indicates that ice segregation can induce micro-and macrocracking in gneiss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.