Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.
The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.
A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences.epilepsy ͉ gene therapy ͉ neurotrophic factors
2Genetic determinants of cognition are poorly characterized and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here, we used a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities including memory. Using exome sequence data from 6,871 trios, we find that M3 genes are also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease genes in the developed human brain, and provide empirical support for a convergent generegulatory network influencing cognition and neurodevelopmental disease.Cognition refers to human mental abilities such as memory, attention, processing speed, reasoning and executive function. Performance on cognitive tasks varies between individuals and is highly heritable 1 and polygenic 2,3 . However, to date, progress in identifying molecular genetic contributions to healthy human cognitive abilities has been limited 4,5 .A distinction can be made between cognitive domains such as the ability to apply acquired knowledge and learned skills (so called crystallized abilities) and fluid cognitive abilities such as the capacity to establish new memories, reason in novel situations or perform cognitive tasks accurately and quickly 6 . Notably, within individuals, performance on different measures of cognitive ability tend to be positively correlated such that people who do well in one domain, such as memory, tend to do well in other domains 7 . Seemingly disparate domains of cognitive ability also show high levels of genetic correlation in twin studies, typically in excess of 0.6 8 , and analyses using genome-wide similarity between unrelated individuals 3 (genome-wide complex trait analysis, GCTA) has also demonstrated substantial genetic correlation between diverse cognitive and learning abilities 9,10 . These studies suggest genes that influence human cognition may exert pleiotropic effects across diverse cognitive domains, such that genes regulating one cognitive ability might influence other cognitive abilities.Since impairment of cognitive function is a core clinical feature of many neurodevelopmental diseases including schizophrenia 11 , autism 12 , epilepsy 13 and intellectual disability (by definition), we sought to investigate gene-regulatory networks for human cognition and to determine their relationship to neurodevelopmental disease. An overview of our experimental design is provided in Supplementary Fig. 1. RESULTS Gene co-expression network a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.