Calreticulin is a ubiquitous and highly conserved Ca(2+)-binding protein that is involved in intracellular Ca(2+) homeostasis and molecular chaperoning in the endoplasmic reticulum (ER). Plant calreticulin, in contrast to its animal counterpart, is often glycosylated: its N-glycans have been shown so far to be of the high-mannose type, typical of ER-resident glycoproteins. During the characterization of calreticulin from vegetative and reproductive tissues of Liriodendron tulipifera L., we gained some biochemical evidence that prompted us to investigate the monosaccharide composition and primary structure of the calreticulin N-glycans isolated from the ovary of this dicotyledon tree. The structures of the components of the N-glycan pool were elucidated by HPLC analysis and exoglycosidase sequencing, and further confirmed by matrix-assisted laser desorption/ionization mass spectrometry. The 16 identified oligosaccharide structures, which consisted of both the high-mannose and complex type, are indicative of calreticulin glycan processing through the ER-to-Golgi pathway up to the medial and trans Golgi stacks. Approximately 45% of calreticulin glycan chains are of the complex type, always containing beta(1,2)-xylose, and approximately a third of these also contain alpha(1,3)-fucose in the core. The most complex glycoform harbors the Lewis-a epitope Gal(beta)1-3[Fuc(alpha)1-4]GlcNAc. Immunolocalization of calreticulin with anti-calreticulin antibodies was consistent with protein transit through the Golgi. Thus, although it contains the tetrapeptide HDEL ER retention signal, the reticuloplasmin calreticulin possesses the competence to transit from the ER compartment to the distal Golgi stacks. The final fate of the protein after its complete maturation is still obscure.
Cell-penetrating peptides are short cationic peptides with the property of translocating across the plasma membrane and transferring macromolecules otherwise unable to permeate cell membranes. We investigated the potential ability of the protein transduction domain derived from amino acids 47-57 of the human immunodeficiency virus type 1 (HIV-1) TAT (transactivator of transcription) protein to be used as a nanocarrier for the delivery of aequorin, a Ca(2+)-sensitive photoprotein widely used as a reliable Ca(2+) reporter in cell populations. The TAT peptide, either covalently linked to apoaequorin or ionically bound to plasmids encoding differentially targeted aequorin, was supplied to plant suspension-cultured cells. The TAT-aequorin fusion protein was found to be rapidly and effectively translocated into plant cells. The chimeric molecule was internalized in fully active biological form and at levels suitable to monitor intracellular Ca(2+) concentrations. Plant cells incubated for just 5 min with TAT-aequorin responded to different environmental stimuli with the expected Ca(2+) signatures. On the other hand, TAT-mediated plasmid internalization did not provide the necessary level of transformation efficiency to allow calibration of luminescence signals into Ca(2+) concentration values. These results indicate that TAT-mediated aequorin transduction is a promising alternative to traditional plant transformation methods to monitor intracellular Ca(2+) dynamics rapidly and effectively in plant cells.
Delta2D and Proteomweaver: Performance evaluation of two different approaches for 2-DE analysis2-DE is a fundamental technology used in proteomics research. However, despite its high capacity to simultaneously separate several proteins for subsequent identification and quantitative comparison studies, a drawback for this technique is its limited reproducibility, especially when comparing data from different laboratories. 2-DE-related variability can be broadly divided into two categories: experimental and post-experimental. Experimental variability depends on physical and chemical parameters, whereas postexperimental variability arises when gels are analyzed by different software packages, particularly when different workflows are followed. In this paper, we compared the analysis performance of two software packages, Delta2D and Proteomweaver, using both standard and experimental gel images. Using standard gel images, the false negative spot count was 50% lower, the false positive count was 77% lower, the true positive count was 19% higher and spot matching was 4% higher in Delta2D when compared to Proteomeweaver. Using experimental gel images, we found that the total amount of time taken to complete the analysis with Delta2D was 30% that of the time needed with Proteomweaver and required fewer user interventions. The differences between ease of use and workflow strategy of these programs is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.