Twenty one phenylpropanoids (including eugenol and safrole) and synthetic analogues, thirteen of them new compounds, were evaluated for antifungal properties, first with non-targeted assays against a panel of human opportunistic pathogenic fungi. Some structure-activity relationships could be observed, mainly related to the influence of an allyl substituent at C-4, an OH group at C-1 and an OCH3 at C-2 or the presence of one or two NO2 groups in different positions of the benzene ring. All active compounds were tested in a second panel of clinical isolates of C. albicans and non-albicans Candida spp., Cryptococcus neoformans and dermatophytes. The eugenol derivative 4-allyl-2-methoxy-5-nitrophenol (2) was the most active structure against all strains tested, and therefore it was submitted to targeted assays. These studies showed that the antifungal activity of 2 was not reversed in the presence of an osmotic support such as sorbitol, suggesting that it does not act by inhibiting the fungal cell wall synthesis or assembly. On the other hand, the Ergosterol Assay showed that 2 did not bind to the main sterol of the fungal membrane up to 250 µg mL−1. In contrast, a 22% of fungal membrane damage was observed at concentrations = 1 × MIC and 71% at 4× MIC, when 2 was tested in the Cellular Leakage assay. The comparison of log P and MICs for all compounds revealed that the antifungal activity of the eugenol analogues would not to be related to lipophilicity.
We tested whether both shrubs and grasses are able to develop similar active fine-root systems in the upper soil layer of the arid Patagonian Monte ecosystem with non-seasonal precipitation. We selected in the field shrub patches consisting of one isolated modal plant of the dominant shrub Larrea divaricata Cav., grass patches formed by one or more bunches of the dominant grass Stipa tenuis Phil. (15 cm diameter), and mixed patches consisting of one individual of L. divaricata with bunches of S. tenuis under its canopy. We assessed the biomass, regrowth, and activity of fine roots (diameter <1.4 mm) of each species in the upper soil (50 cm depth) of each patch type at 3-month intervals. We also measured the N concentration in fine roots to estimate the relative contribution of each species to fine-root biomass of mixed patches. We injected Li + in the soil as a chemical tracer to detect fine-root activity of each species in the upper soil. Fine-root biomass was higher in mixed patches than in grass patches while fine-root biomass in shrub patches did not differ from the two former. We did not find differences in fine-root regrowth among patch types. Li + injection provided evidence of active fine roots of both species in the upper soil when it was wet. N concentration in fine roots suggested the prevalence of fine roots of L. divaricata in the upper soil of mixed patches. Our results support evidence of the ability of fine roots of both the shrub and the grass species to occupy the upper soil. These findings did not support the two-layer model (H Walter, Ecology of tropical and subtropical vegetation, Oliver and Boyd, Edinburgh, 1971) and provide evidence of this model would be less applicable to arid ecosystems with non-seasonal precipitation. Further, our results highlighted some issues deserving more research such as the outcome of belowground competition between neighboring plants of both contrasting life forms, the eventual limited fine-root carrying capacity of the upper soil, and differences in fine-root lifespan between species of both contrasting life form.
Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic latent infections that promote its global spread, hindering disease control. A potato breeding program is conducted in Uruguay based on the introgression of resistance from the wild native species S. commersonii Dun. Currently, several backcrosses were generated exploiting the high genetic variability of this wild species resulting in advanced interspecific breeding lines with different levels of bacterial wilt resistance. The overall aim of this work was to characterize the interaction of the improved potato germplasm with R. solanacearum. Potato clones with different responses to R. solanacearum were selected, and colonization, dissemination and multiplication patterns after infection were evaluated. A R. solanacearum strain belonging to the phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified to constitutively generate fluorescence and luminescence from either the green fluorescence protein gene or lux operon. These reporter strains were used to allow a direct and precise visualization of fluorescent and luminescent cells in plant tissues by confocal microscopy and luminometry. Based on wilting scoring and detection of latent infections, the selected clones were classified as susceptible or tolerant, while no immune-like resistance response was identified. Typical wilting symptoms in susceptible plants were correlated with high concentrations of bacteria in roots and along the stems. Tolerant clones showed a colonization pattern restricted to roots and a limited number of xylem vessels only in the stem base. Results indicate that resistance in potato is achieved through restriction of bacterial invasion and multiplication inside plant tissues, particularly in stems. Tolerant plants were also characterized by induction of anatomical and biochemical changes after R. solanacearum infection, including hyperplasic activity of conductor tissue, tylose production, callose and lignin deposition, and accumulation of reactive oxygen species. This study highlights the potential of the identified tolerant interspecific potato clones as valuable genetic resources for potato-breeding programs and leads to a better understanding of resistance against R. solanacearum in potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.