The relationship between bulk membrane fluidizing effect of ethanol and its toxicity due to oxidative stress is still unknown. To elucidate this issue, membrane fluidity of primary rat hepatocytes was studied by measuring order parameter after inhibition of ethanol-induced oxidative stress. We showed that pretreating cells with either 4-methyl-pyrazole (to inhibit ethanol metabolism), thiourea [a reactive oxygen species (ROS) scavenger], or vitamin E (a free radical chain-breaking antioxidant) prevented the ethanol-induced increase in membrane fluidity, thus suggesting that ethanol metabolism and ROS formation were involved in this elevation. The effects of membrane stabilizing agents (ursodeoxycholic acid or ganglioside GM1), shown to prevent fluidification, next pointed to a role for this increase in membrane fluidity in the development of ethanolinduced oxidative stress. Indeed, ROS production, lipid peroxidation, and cell death were all inhibited by these agents. In contrast, the fluidizing compounds Tween 20 or 2-(2-methoxyethoxy) ethyl 8-(cis-2-n-octylcyclopropyl) octanoate, which increased the membrane fluidizing effect of ethanol, enhanced the related oxidative stress. Using electron paramagnetic resonance to determine low molecular weight iron, we finally demonstrated that membrane fluidity influence proceeded through an increase in low molecular weight iron to enhance oxidative stress. In conclusion, the present findings clearly highlight the pivotal role of membrane fluidity in ethanolinduced oxidative stress and the potential therapeutic effect of membrane stabilizing compounds.
The effects of extracellular Mg2+ on both dynamic changes of [Ca2+]i and apoptosis rate were analysed. The consequences of spatial and temporal dynamic changes of intracellular Ca2+ on apoptosis, in thapsigargin- and the calcium-ionophore 4BrA23187-treated MCF7 cells were first determined. Both 4BrA23187 and thapsigargin induced an instant increase of intracellular Ca2+ concentrations ([Ca2+]i) which remained quite elevated (> 150 nM) and lasted for several hours. [Ca2+]i increases were equivalent in the cytosol and the nucleus. The treatments that induced apoptosis in MCF7 cells were systematically associated with high and sustained [Ca2+]i (150 nM) for several hours. The initial [Ca2+]i increase was not determinant in the events triggering apoptosis. Thapsigargin-mediated apoptosis and [Ca2+]i rise were abrogated when cells were pretreated with the calcium chelator BAPTA. The role of the extracellular Mg2+ concentration has been studied in thapsigargin treated cells. High (10 mM) extracellular Mg2+, caused an increase in basal [Mg2+]i from 0.8+/-0.3 to 1.6+/-0.5 mM. As compared to 1.4 mM extracellular Mg2+, 1 microM thapsigargin induces, in 10 mM Mg2+, a reduced percentage from 22 to 11% of fragmented nuclei, a lower sustained [Ca2+]i and a lower Ca2+ influx through the plasma membrane. In conclusion, the cell death induced by thapsigargin was dependent on high and sustained [Ca2+]i which was inhibited by high extracellular and intracellular Mg2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.