Storage of dough at low temperatures (‐20°C) has a considerable effect on the final quality of baked bread; this is most obviously reflected in lowered specific volumes. In this study, a suite of structural characterization techniques is applied to examine the underlying mechanism of storage damage at the molecular, microstructural, and macroscopic level. By using infrared spectroscopy, the dehydration of the gluten component could be established at the molecular level, and its kinetics could be monitored in time. Time‐domain nuclear magnetic resonance (NMR) showed increased water mobility, which could be attributed to a release of water from the gluten matrix. At the microstructural level, the growth of ice crystals could be monitored by means of cryogenic scanning electron microscopy (cryo‐SEM). These ice crystals are preferably formed in gas cells with kinetics that are slower than those during infrared spectroscopy but similar to those in time‐domain NMR. At the macroscopic level, ice crystals are not evenly distributed over the molded dough, nor are the gas cells homogeneously distributed over the dough. This has implications for the macroscopic water distribution during frozen storage, which could be substantiated by magnetic resonance imaging (MRI) measurements.
Dough processing is an important factor determining the quality of bread. The most important mechanical steps in industrial dough processing are kneading, extrusion, and molding. In all of these processing steps, considerable changes in the structure and properties of the dough can occur. On a laboratory‐scale level, these (structural) effects are well characterized but, so far, no systematic study has been performed at the level of a large‐scale industrial dough processing line. The molecular and microstructural changes that can take place during industrial dough processing were studied with the help of nuclear magnetic resonance (NMR), fundamental rheology, and scanning electron microscopy (SEM). After the kneading step, the dough shows a well‐developed gluten network with a homogeneous dispersion of starch particles (at optimum kneading time). After the extrusion step (a sheeting procedure), the structure of the dough becomes coarser and the dough gluten network is oriented and partially disrupted. This is accompanied with an increase in both rheological stress and water mobility. After molding, the network structure is restored and both the rheological stress and the mobility of water decrease. These findings provide a novel microstructurally‐lead approach to make recommendations for optimization of industrial dough processing lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.