Pancreatic ductal adenocarcinoma (PDAC) is associated with significant fibrosis. Recent findings have highlighted the profibrotic activity of tissue-resident macrophages in the pancreatic cancer microenvironment. Here, we show that neoplastic pancreatic epithelium, as well as a subset of tissue-resident macrophages, expresses the prolactin-receptor (PRLR). High mobility group box 1-induced prolactin expression in the pancreas maintained FAK1 and STAT3 phosphorylation within the epithelium and stroma. Gain-of-function and loss-of-function experiments demonstrated the essential role of prolactin in promoting collagen deposition and fibrosis. Finally, the signaling cascade downstream of prolactin/ PRLR activated STAT3 rather than STAT5 in PDAC. These findings suggest that targeting prolactin together with IL6, a known major activator of STAT3, could represent a novel therapeutic strategy for treating pancreatic cancer.Significance: Prolactin is a key factor in the cross-talk between the stroma and neoplastic epithelium, functioning to promote fibrosis and PDAC progression.
Background & AimsTissue hypoxia controls cell differentiation in the embryonic pancreas, and promotes tumor growth in pancreatic cancer. The cellular response to hypoxia is controlled by the hypoxia-inducible factor (HIF) proteins, including HIF2α. Previous studies of HIF action in the pancreas have relied on loss-of-function mouse models, and the effects of HIF2α expression in the pancreas have remained undefined.MethodsWe developed several transgenic mouse models based on the expression of an oxygen-stable form of HIF2α, or indirect stabilization of HIF proteins though deletion of von Hippel-Lindau, thus preventing HIF degradation. Furthermore, we crossed both sets of animals into mice expressing oncogenic KrasG12D in the pancreas.ResultsWe show that HIF2α is not expressed in the normal human pancreas, however, it is up-regulated in human chronic pancreatitis. Deletion of von Hippel-Lindau or stabilization of HIF2α in mouse pancreata led to the development of chronic pancreatitis. Importantly, pancreatic HIF1α stabilization did not disrupt the pancreatic parenchyma, indicating that the chronic pancreatitis phenotype is specific to HIF2α. In the presence of oncogenic Kras, HIF2α stabilization drove the formation of cysts resembling mucinous cystic neoplasm (MCN) in humans. Mechanistically, we show that the pancreatitis phenotype is linked to expression of multiple inflammatory cytokines and activation of the unfolded protein response. Conversely, MCN formation is linked to activation of Wnt signaling, a feature of human MCN.ConclusionsWe show that pancreatic HIF2α stabilization disrupts pancreatic homeostasis, leading to chronic pancreatitis, and, in the context of oncogenic Kras, MCN formation. These findings provide new mouse models of both chronic pancreatitis and MCN, as well as illustrate the importance of hypoxia signaling in the pancreas.
Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1+/CD90−/Ecad− cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.