The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in culture and bind to a sequence motif (St-domain) in the angiotensinogen promoter to activate its transcription in transient transfection assay. We have also observed a dramatic increase in the St-domain binding activity of STAT proteins in the hypertrophied heart of the genetically hypertensive rat relative to that of the aged-matched normotensive strain WKY, providing a compelling argument in favor of the linkage of STAT pathway to the heart tissue autocrine AngII loop. These studies thus uncover a mechanism by which the activation of a selective set of STATs underlies mobilization of the gene activation program intrinsic to cardiac hypertrophy.
Transcription factors belonging to the basic helix ± loop ± helix (bHLH) family are critical regulators of cellular proliferation and dierentiation. The functional activity of these proteins can be regulated by heterodimerization through the HLH domain, as a result of formation of functional or non-functional heterodimers. The presence of a leucine zipper in bHLH-leucine zipper (bHLHZip) proteins, however, prevents such heterodimeric interactions via the HLH domain between bHLH and bHLHZip proteins. To identify cellular proteins that directly interact with and modulate transcriptional repression mediated by the bHLH protein Stra13, we carried out a yeast two hybrid screen. The bHLHZip protein USF (Upstream Stimulatory factor) was identi®ed as a Stra13 interacting protein. We demonstrate a direct interaction between Stra13 and USF that is dependent upon the C-terminal repression domain of Stra13 and the DNA-binding domain of USF. Stra13 and USF also colocalize and functionally interact in mammalian cells. Co-expression of USF abrogates Stra13-mediated repression of target genes and conversely, Stra13 inhibits DNA-binding and USF-mediated transactivation. Taken together, our data demonstrate that Stra13 and USF interact physically and functionally, and identify a novel mode of cross regulatory interaction between members of the bHLH and bHLHZip families that abrogates their functional activity. Oncogene (2001) 20, 4750 ± 4756.
The expression of the cardiac myosin light chain 2 (MLC2) gene is repressed in skeletal muscle as a result of the negative regulation of its transcription. Two regulatory elements, the cardiac specific sequence (CSS) located upstream (؊360 base pairs) and a downstream negative modulatory sequence (NMS), which function in concert with each other, are required for repression of the MLC2 promoter activity in skeletal muscle. Individually, CSS and NMS have no effect. Transient transfection analysis with recombinant plasmids indicated that CSS-and NMS-mediated repression of transcription is position-and orientation-dependent and is transferable to heterologous promoters. A minimal conserved motif, GAAG/CTTC, present in both CSS and NMS, is responsible for repression as the mutation in the core CTTC sequence alone was sufficient to abrogate its repressor activity. The DNA binding assay by gel mobility shift analysis revealed that one of the two complexes, CSSBP2, is significantly enriched in embryonic skeletal muscle relative to cardiac muscle. In extracts from adult skeletal muscle, where the cardiac MLC2 expression is suppressed, both complexes, CSSBP1 and CSSBP2, were present, whereas the cardiac muscle extracts contained CSSBP1 alone, suggesting that the protein(s) in the CSSBP2 complex accounts for the negative regulation of cardiac MLC2 in skeletal muscle. A partial cDNA clone (Nished) specific for the candidate repressor factor was isolated by expression screening of the skeletal muscle cDNA library by multimerized CSS-DNA as probe. The recombinant Nished protein binds to the CSS-DNA, but not to ⌬CSS-DNA where the core CTTC sequence was mutated. The amino acid sequence of Nished showed a significant structural similarity to the sequence of transcription factor "runt," a known repressor of gap and pair-rule gene expression in Drosophila.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.