A cal. 20-year-resolution pollen record from Gonghai Lake presented the detailed process of mountain vegetation succession and East Asian Summer Monsoon (EASM) changes since the last deglaciation in Shanxi Province, North China. Modern vegetation distribution and lake surface pollen assemblages suggested that the fossil pollen mainly came from local and surrounding vegetation in Gonghai Lake, which reflected the elevational changes of plant communities in study area. From 14,700 to 11,100 cal. yr BP, open forests and mountain meadows dominated by shrubs and herbaceous species in surrounding area, suggesting a weak EASM with less precipitation. In the period between 11,100 and 7300 cal. yr BP, bushwoods and grasses were gradually replaced by mixed broadleaf-conifer forest, first developed by pioneer species of Betula and Populus and then replaced by Picea, Pinus, and Quercus, implying an enhanced EASM and increased temperature and precipitation. During the period of 7300–5000 cal. yr BP, warm-fitted trees became expanded and widespread, indicating a climax community of mixed broadleaf-conifer forest and warm and humid climate with higher temperature and sufficient precipitation and the strongest period of EASM. From 5000 to 1600 cal. yr BP, Pinus pollen increased, but Quercus pollen decreased, showing the breakup of the climax community and the recession of the EASM. Since 1600 cal. yr BP, under the threats of land reclamation and deforestation, forest cover sharply decreased, and mountain grass lands were developed. The EASM changes inferred from pollen record of Gonghai Lake were asynchronous to the oxygen isotope records of stalagmites from southern China. We suggest that the existence of remnant Northern Hemisphere ice sheets and relative low sea levels might hampered the northward penetration of the EASM in early Holocene, which caused the maximum monsoon precipitation to reach northern China until mid-Holocene.
Research on modern pollen assemblages of human-induced vegetation is conducive to extracting human impact information, and provides basis for determining human impact intensity. The use of 189 surface soil pollen samples from human-induced and natural vegetation shows that there were significant discrepancies of indicator pollen taxa and human impact intensity between different vegetation types in Northern China. The results demonstrate that forest and grassland pollen assemblages are dominated by natural vegetation pollen taxa, which show little effect from human impact. Farmlands are dominated by Cereal Poaceae pollen. Cultivation methods, climate conditions and human impact intensity are the main reasons that cause discrepancy in different regions. Uncultivated lands could be effectively distinguished based on common human-companion plant pollen types and certain amount of crop pollen, which display the first step of secondary succession from human-induced to natural vegetation. Indicator species analysis shows that Cereal Poaceae, Trilete spore, Humulus and Brassicaceae indicate farmlands; weeds Poaceae, Chenopodiaceae, Ranunculaceae and Selaginella sinensis indicate uncultivated lands; grasslands have the largest number of indicator pollen taxa, in which Convolvulaceae, Artemisia, Asteraceae, Liliaceae, Polygonaceae, and Nitraria pollen have the highest indicator values; in forests, Betula, Larix and Quercus have the highest indicator values with statistical significance. Meanwhile, Human Influence Index (HII) values can be used to differentiate human-induced and natural vegetation. The calibration model of pollen-HII based on the weighted averaging plus partial least squares (WA-PLS) method exhibits a good statistical performance ( R2 = 0.69), and the HII values have the same trend of change with Cereal Poaceae percentage. Our results confirm that pollen from human-induced vegetation can provide reliable estimates of HII, which provides a good reference for restoring human impact intensity in fossil pollen assemblage.
Pollen assemblages of 53 surface pollen samples from farmlands and wastelands in Northeast China were analyzed. Tree pollen percentages were usually higher than 30%, with Pinus (26.9%), Quercus (0.9%), Betula (0.9%) and Populus (0.7%) as the major types, and herb pollen percentages were usually higher than 50%, with weedy Poaceae (8.7%), Chenopodiaceae (7.1%), Artemisia (1.9%) and Compositae (3.5%) as the major taxa. Thus, the pollen assemblages were consistent with the regional vegetation compositions. However, there were differences in pollen assemblages among regions, especially among different geomorphologi-cal units. For example, in the mountains, there were more types of tree pollen and higher total percentages (average 42%) than in other areas, while cereal pollen percentages were lowest (11.2%). In the hills and high plains, herbs made up more than 60% of the pollens, with cereals (average 53.6%) the dominant type. In the low plains, pollen types were similar to those in the hills and high plains, but total pollen concentrations and the proportion of Concentricystes were much higher, while cereal pollen percentages were slightly lower (average 41.6%). Pollen assemblages in different land use types also differed. For example, in farmland, cereal pollen percentages were more than 40% and Chenopodiaceae was usually less than 2.5%, while in wasteland, weedy Po-aceae was usually less than 10% and Chenopodiaceae was usually higher than 25%. Total pollen concentrations in farmland (av-erage 3909 grains/g) were much lower than in wasteland (average 15074 grains/g). Redundancy analysis revealed that pollen assemblages were significantly negatively correlated with mean annual temperature (0.73) and July mean temperature (0.81) and significantly positively correlated with mean annual precipitation (0.48), indicating that pollen assemblages in the artificial or human-disturbed vegetation reflect regional climate well. Comparison of pollen assemblages in different areas of northern China showed that pollen concentrations reflect the intensities of human impact to some degree. For example, pollen concentrations decrease as human impacts increase in intensity. The cereal pollen proportions in farmland differed by area. In Northeast China, cereal pollen proportions were distinctly higher than in most other areas of northern China, suggesting differences in planting habits and climate. Northeast China, farmlands, wastelands, pollen assemblages, human impact, climate Citation: Li M Y, Li Y C, Xu Q H, et al. Surface pollen assemblages of human-disturbed vegetation and their relationship with vegetation and climate in Northeast
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.