Undoubtedly, the age of big data has opened new options for natural disaster management, primarily because of the varied possibilities it provides in visualizing, analyzing, and predicting natural disasters. From this perspective, big data has radically changed the ways through which human societies adopt natural disaster management strategies to reduce human suffering and economic losses. In a world that is now heavily dependent on information technology, the prime objective of computer experts and policy makers is to make the best of big data by sourcing information from varied formats and storing it in ways that it can be effectively used during different stages of natural disaster management. This paper aimed at making a systematic review of the literature in analyzing the role of big data in natural disaster management and highlighting the present status of the technology in providing meaningful and effective solutions in natural disaster management. The paper has presented the findings of several researchers on varied scientific and technological perspectives that have a bearing on the efficacy of big data in facilitating natural disaster management. In this context, this paper reviews the major big data sources, the associated achievements in different disaster management phases, and emerging technological topics associated with leveraging this new ecosystem of Big Data to monitor and detect natural hazards, mitigate their effects, assist in relief efforts, and contribute to the recovery and reconstruction processes.
The sudden outbreak of the Coronavirus disease (COVID-19) swept across the world in early 2020, triggering the lockdowns of several billion people across many countries, including China,
Various recent studies have shown that societal efforts to mitigate (e.g. “lockdown”) the outbreak of the 2019 coronavirus disease (COVID-19) caused non-negligible impacts on the environment, especially air quality. To examine if interventional policies due to COVID-19 have had a similar impact in the US state of California, this paper investigates the spatiotemporal patterns and changes in air pollution before, during and after the lockdown of the state, comparing the air quality measurements in 2020 with historical averages from 2015 to 2019. Through time series analysis, a sudden drop and uptick of air pollution are found around the dates when shutdown and reopening were ordered, respectively. The spatial patterns of nitrogen dioxide (NO 2 ) tropospheric vertical column density (TVCD) show a decreasing trend over the locations of major powerplants and an increasing trend over residential areas near interactions of national highways. Ground-based observations around California show a 38%, 49%, and 31% drop in the concentration of NO 2 , carbon monoxide (CO) and particulate matter 2.5 (PM 2.5 ) during the lockdown (March 19–May 7) compared to before (January 26–March 18) in 2020. These are 16%, 25% and 19% sharper than the means of the previous five years in the same periods, respectively. Our study offers evidence of the environmental impact introduced by COVID-19, and insight into related economic influences.
The novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide, particularly in densely populated countries such as Bangladesh with inadequate health care facilities. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not have been pragmatically implementable in developing countries due to social and economic reasons (i.e., poor education, less public awareness, massive unemployment). Hence, to elucidate COVID-19 transmission dynamics with respect to the NPI status—e.g., social distancing—this study conducted spatio-temporal analysis using the prospective scanning statistic at district and sub-district levels in Bangladesh and its capital, Dhaka city, respectively. Dhaka megacity has remained the highest-risk “active” cluster since early April. Lately, the central and south eastern regions in Bangladesh have been exhibiting a high risk of COVID-19 transmission. The detected space-time progression of COVID-19 infection suggests that Bangladesh has experienced a community-level transmission at the early phase (i.e., March, 2020), primarily introduced by Bangladeshi citizens returning from coronavirus epicenters in Europe and the Middle East. Potential linkages exist between the violation of NPIs and the emergence of new higher-risk clusters over the post-incubation periods around Bangladesh. Novel insights into the COVID-19 transmission dynamics derived in this study on Bangladesh provide important policy guidelines for early preparations and pragmatic NPI measures to effectively deal with infectious diseases in resource-scarce countries worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.