To estimate impacts, support cost–benefit analyses, and enable project prioritization, it is necessary to identify the area of influence of a transportation infrastructure project. For freight related projects, like ports, state-of-the-practice methods to estimate such areas ignore complex interactions among multimodal supply chains and can be improved by examining the multimodal trips made to and from the facility. While travel demand models estimate multimodal trips, they may not contain robust depictions of water and rail, and do not provide direct observation. Project-specific data including local traffic counts and surveys can be expensive and subjective. This work develops a systematic, objective methodology to identify multimodal “freight-shed” (or “catchment” areas) for a facility from vehicle tracking data and demonstrates application with a case study involving diverse freight port terminals. Observed truck Global Positioning System and maritime Automatic Identification System data are subjected to robust pre-processing algorithms to handle noise, cluster stops, assign data points to the network (map-matching), and address spatial and temporal conflation. The method is applied to 43 port terminals on the Arkansas River to estimate vehicle miles and hours travelled, origin, destination, and pass-through zones, and areas of modal overlap within the catchment areas. Case studies show that the state-of-the-practice 100-mile diameter influence areas include between 15 and 34% of the multimodal freight-shed areas mined from vehicle tracking data, demonstrating that adoption of an arbitrary radial area for different ports would lead to inaccurate estimates of project benefits.
Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multi-modal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as timestamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84⋅0% accuracy in detecting stops at ports and 83⋅5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.
Travel demand models (TDMs) with freight forecasts estimate performance metrics for competing infrastructure investments and potential policy changes. Unfortunately, freight TDMs fail to represent non-truck modes with levels of detail adequate for multimodal infrastructure and policy evaluation. Recent expansions in the availability of maritime movement data, i.e. Automatic Identification System (AIS), make it possible to expand and improve representation of maritime modes within freight TDMs. AIS may be used to track vessel locations as time-stamped latitude–longitude points. For estimation, calibration and validation of freight TDMs, this work identifies vessel trips by applying network mapping (map-matching) heuristics to AIS data. The automated methods are evaluated on a 747-mile inland waterway network, with AIS data representing 88% of vessel activity. Inspection of 3820 AIS trajectories was used to train the heuristic parameters including stop time, duration and location. Validation shows 84·0% accuracy in detecting stops at ports and 83·5% accuracy in identifying trips crossing locks. The resulting map-matched vessel trips may be applied to generate origin–destination matrices, calculate time impedances, etc. The proposed methods are transferable to waterways or maritime port systems, as AIS continues to grow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.