Software defect prediction studies aim to predict defect-prone components before the testing stage of the software development process. The main benefit of these prediction models is that more testing resources can be allocated to fault-prone modules effectively. While a few software defect prediction models have been developed for mobile applications, a systematic overview of these studies is still missing. Therefore, we carried out a Systematic Literature Review (SLR) study to evaluate how machine learning has been applied to predict faults in mobile applications. This study defined nine research questions, and 47 relevant studies were selected from scientific databases to respond to these research questions. Results show that most studies focused on Android applications (i.e., 48%), supervised machine learning has been applied in most studies (i.e., 92%), and object-oriented metrics were mainly preferred. The top five most preferred machine learning algorithms are Naïve Bayes, Support Vector Machines, Logistic Regression, Artificial Neural Networks, and Decision Trees. Researchers mostly preferred Object-Oriented metrics. Only a few studies applied deep learning algorithms including Long Short-Term Memory (LSTM), Deep Belief Networks (DBN), and Deep Neural Networks (DNN). This is the first study that systematically reviews software defect prediction research focused on mobile applications. It will pave the way for further research in mobile software fault prediction and help both researchers and practitioners in this field.
Smartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.