Biodegradable polymer stent with shape memory effect is expected to be developed in the treatment of esophageal stenosis, most likely due to traditional stents having such shortages as considerable rigidity and nondegradation. A tubular stent with the inner and outer diameters of 28 and 30 mm was manufactured from biodegradable poly(ε-caprolactone-co-DL-lactide) (PCLA) copolymer consisting of ε-caprolactone and DL-lactide at a weight ratio of 10/90. A series of tests were accomplished to investigate its properties including shape memory effects (SMEs), compression property and influence of in vitro degradation of polymer matrix on its shape recovery and dilation force. Significantly, an implantation of the stent into a dog model was performed to evaluate its function for the treatment of esophageal stenosis. The deformed stent needs about 36 s to recover its initial shape in vitro in 37°C warm water. The primary animal experiment in vivo has revealed that the implanted deformed stent could be triggered by body temperature and expectedly returned to a nearly-round shape to support esophageal wall. Therefore, the biodegradable intelligent polymer stent may be great potential to displace the conventional metallic stents for the esophageal stenosis therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.