The human immunodeficiency virus type 1 Vpu protein is a 16-kDa phosphoprotein which enhances the efficiency of virion production and induces rapid degradation of CD4, the cellular receptor for human immunodeficiency virus. The topology of membrane-inserted Vpu was investigated by using in vitrosynthesized Vpu cotranslationally inserted into canine microsomal membranes. Proteolytic digestion and immunoprecipitation studies revealed that Vpu was a type I integral membrane protein, with the hydrophilic domain projecting from the cytoplasmic membrane face. In addition, several high-molecular-weight proteins containing Vpu were identified by chemical cross-linking. Such complexes also formed when wild-type Vpu and a Tat-Vpu fusion protein were coexpressed. Subsequent analysis by one-and two-dimensional electrophoresis revealed that these high-molecular-weight complexes consisted of homo-oligomers of Vpu. These findings indicate that Vpu is a type I integral membrane protein capable of multimerization.
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus (HIV) receptor for infection of human host cells. We have recently demonstrated that Vpu, an HIV type 1 (H1V-i) encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. In this report, we describe an in vitro model system that allowed us to define important parameters for Vpu-dependent CD4 degradation. The rate of CD4 decay in rabbit reticulocyte lysate was approximately one-third of that observed previously in tissue culture experiments in the presence of Vpu (40 versus 12 min) and required no other HIV-1 encoded proteins. Degradation was contingent on the presence of microsomal membranes in the assay and the coexpression of Vpu and CD4 in the same membrane compartment. By using the in vitro degradation assay, the effects of specific mutations in CD4, including C-terminal truncations and glycosylation mutants, were analyzed. The results of these experiments indicate that Vpu has the capacity to induce degradation of glycosylated as well as nonglycosylated membrane-associated CD4. Truncation of 13 C-terminal amino acids of CD4 did not affect the ability ofVpu to induce its degradation. However, the removal of 32 amino acids from the C-terminus of CD4 completely abolished sensitivity to Vpu. This suggests that Vpu targets specific sequences in the cytoplasmic domain of CD4 to induce its degradation. We also analyzed the effects of mutations in Vpu on its biological activity in the in vitro CD4 degradation assay. The results of these
IntroductionAlthough access to highly active antiretroviral therapy (HAART) has prolonged survival and improved life quality, HIV-infected patients with severe immunosuppression or comorbidities may develop complications that require critical care support in intensive care units (ICU). This study aimed to describe the etiology and analyze the prognostic factors of HIV-infected Taiwanese patients in the HAART era.MethodsMedical records of all HIV-infected adults who were admitted to ICU at a university hospital in Taiwan from 2001 to 2010 were reviewed to record information on patient demographics, receipt of HAART, and reason for ICU admission. Factors associated with hospital mortality were analyzed.ResultsDuring the 10-year study period, there were 145 ICU admissions for 135 patients, with respiratory failure being the most common cause (44.4%), followed by sepsis (33.3%) and neurological disease (11.9%). Receipt of HAART was not associated with survival. However, CD4 count was independently predictive of hospital mortality (adjusted odds ratio [AOR], per-10 cells/mm3 decrease, 1.036; 95% confidence interval [CI], 1.003 to 1.069). Admission diagnosis of sepsis was independently associated with hospital mortality (AOR, 2.91; 95% CI, 1.11 to 7.62). A hospital-to-ICU interval of more than 24 hours and serum albumin level (per 1-g/dl decrease) were associated with increased hospital mortality, but did not reach statistical significance in multivariable analysis.ConclusionsRespiratory failure was the leading cause of ICU admissions among HIV-infected patients in Taiwan. Outcome during the ICU stay was associated with CD4 count and the diagnosis of sepsis, but was not associated with HAART in this study.
Human immunodeficiency virus type 1 viral protein R (Vpr) is required for viral pathogenesis and has been implicated in T-cell apoptosis through its activation of caspase 3 and caspase 9 and perturbation of mitochondrial membrane potential. To understand better Vpr-mitochondria interaction, we report here the identification of antiapoptotic mitochondrial protein HAX-1 as a novel Vpr target. We show that Vpr and HAX-1 physically associate with each other. Overexpression of Vpr in cells dislocates HAX-1 from its normal residence in mitochondria and creates mitochondrion instability and cell death. Conversely, overexpression of HAX-1 suppressed the proapoptotic activity of Vpr.
Between June 1994 and February 2003, a total of 111 human immunodeficiency virus (HIV)-infected patients with chronic hepatitis B virus (HBV) coinfection and 387 HIV-infected patients without HBV or hepatitis C virus coinfection were prospectively observed to assess the impact of HBV infection on outcomes of HIV-infected patients. After a median duration of observation of 25 months, coinfected patients were more likely to develop hepatitis (adjusted hazard ratio [AHR], 2.54; 95% confidence interval [CI], 1.69-3.82) and hepatic decompensation (adjusted odds ratio [AOR], 9.94; 95% CI, 1.89-52.35). Although similar proportions of the 2 patient groups had an increase in the CD4 count by> or =100x10(6) cells/L (AOR, 0.78; 95% CI, 0.45-1.36) and development of new opportunistic illnesses (AOR, 0.94; 95% CI, 0.53-1.66), HBV-infected patients had an increased risk for virologic failure (AOR, 1.76; 95% CI, 1.03-2.99) and death (AHR, 1.71; 95% CI, 1.19-2.47) after highly active antiretroviral therapy was initiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.