Surface texturing is an effective approach to improve the tribological properties of mechanical components. An indentation method is presented to fabricate dimple textures on bronze specimen surfaces. Graphite was selected as the mating balls in ball-on-disc wear tests. The worn surfaces and the indented dimples heaped with the thin ribbon debris were observed by microscope. The morphology and evolution of wear debris were employed to explain the influence of indented dimple textures. The experimental results indicate that the generation of thin ribbon debris is due to the edge hardening of indented dimple. The thin ribbon debris and the indented conical dimple are conducive to the debris heaping on slopes of dimples, which can facilitate the formation of the graphite-rich transfer layers on indented dimple surface. Compared with nontextured surface, indented dimple surface has lower coefficients of friction and slighter wear. The tribological properties of indented dimple surface are improved because of the edge hardening, the debris heaping and the formation of transfer layers.
Expensive diamond grains remaining within waste diamond grinding wheels and wheel substrate need to be recycled. Electroplated diamond grinding wheel was taken as an example. An idea of "substrate structure-induced cracks (SSIC)" was proposed to solve the disassembly problem of waste electroplated diamond wheels. An assembled substrate for electroplated diamond grinding wheel was designed. Fabrication and disassembly experiments of electroplated diamond wheel with assembled substrate were carried out. Also, finite element analysis was used to investigate the mechanism of disassembly processes. Recycling experiments of electroplated diamond wheels were carried out in three ways, namely acid corrosion method, electrolysis method and SSIC method. The experimental results show that cracks generate in the diamond abrasive layer of the assembled wheel. The simulated maximum principal stress occurs on diamond abrasive layer near the mating surface between cylindrical pins and substrate, which is consistent with the location where the crack is created. The abrasive layer can be easily peeled off from substrate after the cracks occur on abrasive layer. Compared with electrolysis and acid corrosion methods, the SSIC method has the shortest disassembly time and the lowest disassembly costs. The assembled substrate provides possibility to exert cracking forces from substrate to diamond abrasive layer. With assembled substrate, the nondestructive disassembly of electroplated diamond wheel can be fulfilled. Assembled substrate can meet the need of DFD for electroplated diamond grinding wheel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.